
PaSe: An Extensible and Inspectable DSL
for Micro-Animations

Ruben P. Pieters �[0000−0003−0537−9403] and Tom
Schrijvers[0000−0001−8771−5559]

KU Leuven, 3001 Leuven, Belgium
{ruben.pieters, tom.schrijvers}@cs.kuleuven.be

Abstract. This paper presents PaSe, an extensible and inspectable DSL
embedded in Haskell for expressing micro-animations. PaSe builds ani-
mations in compositional fashion, using parallel and sequential anima-
tions as basic building blocks. This differs from typical animation li-
braries which mostly focus on sequential composition and utilize call-
backs and implicit effects for their expressivity. To provide similar flex-
ibility to other animation libraries, PaSe features extensibility of opera-
tions and inspectability of animations. We present the features of PaSe
with a to-do list application, discuss the PaSe implementation, and argue
that the callback style of extensibility is detrimental for correctly inte-
grating inspectability. To illustrate this, we contrast with the GreenSock
Animation Platform, a professional-grade and widely used JavaScript
animation library.

1 Introduction

Because of their ability to structure effectful code in a pure functional codebase,
monads quickly became ubiquitous in functional programming [20]. They have
since seen wide use in Haskell Domain Specific Languages (DSLs). However, the
choice for a monadic DSL implies certain trade-offs. The obvious advantage of
monadic DSLs is their expressivity, but there are also drawbacks. The main loss
is that of inspectability, as monadic computations can only be inspected up to the
next action. Techniques such as applicative functors [16], arrows [9], or selective
applicative functors [18] choose the other side of the trade-off: they increase the
inspection capabilities by reducing the expressivity compared to monads.

This paper develops a DSL embedded in Haskell for defining micro-animations,
called PaSe1. PaSe employs a technique which alleviates some aspects of the
trade-off between expressivity and inspectability. The expressivity of control flow
is restricted by means of type classes, inspired by the MTL style originally in-
troduced by Liang et al. [14]. The MTL style is an open encoding which allows
extensions to the syntax of the DSL. Instantiating the abstract animation defini-
tions with, for example, the Const functor provides inspectability. Expressivity

1 Pronounced pace (peIs), the name is derived from Parallel and Sequential.

2 R. P. Pieters and T. Schrijvers

can be increased, while preserving inspectability, by adding new control flow
constructs to the DSL and providing a corresponding instance for inspection.

Micro-animations are short animations displayed when users interact with
an application, for example an animated transition between two screens. When
used appropriately, they aid the user in understanding evolving states of the
application [1,7,8]. Examples can be found in almost every software application:
window managers animate window minimization, menus in mobile applications
pop in gradually, browsers highlight newly selected tabs with an animation, etc.

PaSe provides the features expected of animation libraries by building them
with recent ideas from functional programming. Our contributions are as follows:

– We develop PaSe, which supports arbitrary composition of animations and
inspectability. Animation libraries, such as the GreenSock Animation Plat-
form (GSAP)2, typically use callbacks as a means of extensibility/expressivity;
this is detrimental to inspectability. We show an example resulting in unex-
pected behaviour and how PaSe correctly handles it.

– PaSe is an extensible DSL: the syntax can be extended with new operations.
The animations use case is novel for approaches to extensibility.

– PaSe supports inspectability : extracting information from computations be-
fore running it. Inspectability is present in specific computation classes, such
as free applicatives [2]. But, it is novel to combine it with extensibility.

– PaSe supports arbitrary nesting of parallel and sequential animations which
correctly interacts with inspectability. Such parallel components exist al-
ready, see for example Ren’Py3, React Native Animations4 or Qt Anima-
tions5. Yet, general-purpose animation libraries lack them. Also, we correctly
support the interaction with inspectability.

– We implemented various examples6: a to-do list application, a communica-
tion story example, a game-like demo application and a Pac-Man game. We
combined PaSe with both gloss7 and the Haskell SDL bindings8 as graph-
ics backend. This paper uses the to-do list as motivating application and
compares the development of the Pac-Man application, developed in both
Haskell with PaSe and in TypeScript with GSAP.

2 Motivation

We present a to-do list application to showcase the functionality of PaSe.

2 https://greensock.com
3 https://www.renpy.org/doc/html/atl.html#parallel-statement
4 https://facebook.github.io/react-native/docs/animated#parallel
5 https://doc.qt.io/qt-5/animation.html
6 https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples
7 https://hackage.haskell.org/package/gloss
8 https://hackage.haskell.org/package/sdl2

https://greensock.com
https://www.renpy.org/doc/html/atl.html#parallel-statement
https://facebook.github.io/react-native/docs/animated#parallel
https://doc.qt.io/qt-5/animation.html
https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples
https://hackage.haskell.org/package/gloss
https://hackage.haskell.org/package/sdl2

PaSe: An Extensible and Inspectable DSL for Micro-Animations 3

2.1 Running Example

Our application has two screens: a main screen and a menu screen. The main
screen contains a navigation bar and three items. An overview of the application
is given in Figure 1. These screenshots are captured from the application built
by combining PaSe with gloss as graphics backend.

Fig. 1: Overview of the to-do list application.

In this application, various user actions are accompanied with an animation.
We list these actions below. Some animations are shown in Figure 2.

– The user marks items as (not) done by clicking them. The checkmark icon
changes shape and color to display its status change.

– The user filters items by their status with the navigation bar buttons. The
leftmost shows all items, the middle shows all completed items, and the
rightmost shows all unfinished items. The navigation bar underline and to-
do items itself change shape to indicate the new selection.

– The menu screen shows/hides itself after clicking the menu icon (Ó). The
menu expands inwards from the left, to indicate the application state changes.

2.2 Composing Animations

Animations are built in a compositional fashion. When creating an animation, we
decompose it into smaller elements. For example, the menuIntro animation both
introduces the menu screen and fades out the background. Thus, it is composed
of two basic animations menuSlideIn and appFadeOut in parallel. The next
sections explain how to construct such basic and composed animations.

Basic Animations Basic animations change the property of an element over
a period of time. The linearTo function has three inputs: a lens targeting the
property, the duration, and the target value for this property. This results in a
linear change from the current value to its target, hence the name. The duration
is specified with For while the target value is specified with To.

To animate the navigation bar underline, we reduce the width of the leftmost
underline for 0.25 seconds and increase the width of the middle underline for 0.25
seconds. These animations are expressed in respectively line1Out and line2In

below, and visualized in Figure 3.

line1Out = linearTo (navbar . underline1 . width) (For 0.25) (To 0)

line2In = linearTo (navbar . underline2 . width) (For 0.25) (To 28)

4 R. P. Pieters and T. Schrijvers

(a) markAsDone: the checkmark changes shape and color.

(b) onlyDone: the to-do items fade out and the navbar underline changes.

(c) menuIntro: the menu appears while the background fades out.

Fig. 2: Micro-Animations in the to-do list application.

Note on Lenses We use lens notation x . y . z to target z inside a nested
structure { x: { y: { z: T } } }. This type of lenses was conceived by van
Laarhoven [13], and later packaged into various Haskell libraries, such as lens9.

The menuSlideIn and appFadeOut animations are other examples. For the
former, we increase the width of the menu over a duration of 0.5 seconds, and
for the latter we increase the opacity of the obscuring box, determined by alpha,
over a duration of 0.5 seconds. These animations are visualized in Figure 3.

menuSlideIn = linearTo (menu . width) (For 0.5) (To 75)

appFadeOut = linearTo (obscuringBox . alpha) (For 0.5) (To 0.65)

Composed Animations A composed animation combines several other ani-
mations into a new one. We can do this either in sequence or in parallel.

We create selectBtn2 by combining line1Out and line2In with sequential.
This constructs a new animation which first plays line1Out, and once it is fin-
ished plays line2In.

selectBtn2Anim = line1Out ‘sequential‘ line2In

9 https://hackage.haskell.org/package/lens

https://hackage.haskell.org/package/lens

PaSe: An Extensible and Inspectable DSL for Micro-Animations 5

(a) The line1Out animation.

(b) The line2In animation.

(c) The menuSlideIn animation.

(d) The appFadeOut animation.

Fig. 3: Basic linearTo animations.

To obtain menuIntro, we combine both menuSlideIn and appFadeOut with
parallel. This constructs a new animation which plays both menuSlideIn and
appFadeOut at the same time.

menuIntro = menuSlideIn ‘parallel‘ appFadeOut

Both of these animations are visualized in Figure 4.

3 Extensibility, Inspectability and Expressiveness

The features in Section 2 form the basis of PaSe. To provide support for addi-
tional features present in other animation libraries, we design PaSe to be extensi-
ble and inspectable. This means that PaSe can be extended with new operations
and information can be derived from inspecting specified animations. To support
arbitrary expressiveness in combination with those features, we also emphasize
the possibility to extend PaSe with new combinators.

6 R. P. Pieters and T. Schrijvers

(a) The selectBtn2 animation.

(b) The menuIntro animation.

Fig. 4: All of the defined composed animations.

3.1 Extensibility

The linearTo operation and the sequential and parallel combinators form
the basis for expressing a variety of animations. However, there are situations
which require other primitives to express desired animations. For example, GSAP
provides a primitive to morph one shape into another.

An example in the to-do list app is checkIcon, part of markAsDone, where
we want to set the color of the checkmark to a new value. We define a custom
set operation and embed it inside a PaSe animation. In this animation we use
Haskell’s do-notation to specify sequential animations.

checkIcon = do ...; set (checkmark . color) green; ...

3.2 Inspectability

PaSe is inspectable, meaning that we can derive properties of expressed compu-
tations by inspecting them rather than running them. For example, we want to
know the duration of menuIntro without actually running it and keeping track
of the time. The duration function calculates the duration by inspecting the
animation. Passing it menuIntro gives a duration of 0.5 seconds, which is indeed
the duration of two 0.5 second animations in parallel.

menuIntroDuration = duration menuIntro -- = 0.5

Of course, it is not possible to inspect every animation. In the following
situation we have a custom operation get, the dual of set in the previous section,
returning a Float. If the result of this value is used as the duration parameter,
then we cannot know upfront how long this animation will last. Requesting to
calculate the duration then results in a type error.

PaSe: An Extensible and Inspectable DSL for Micro-Animations 7

complicatedAnim = do v <- get; linearTo lens (For v) (To 10)

complicatedAnimDuration = duration complicatedAnim -- type error

Calculating a duration is a stepping stone towards other interesting features.
One such example is sequentially composing animations with a relative offset.
For example, to compose a first animation anim1 with a second animation anim2

which starts 0.5 seconds before the end of anim1.

relSeqAnim = relSequential anim1 anim2 (-0.5)

3.3 Expressiveness

In monadic DSLs the >>= and return combinators provide the needed expressiv-
ity. When creating inspectable animations, >>= is a liability since it has limited
inspectability. PaSe supports extension with custom control flow combinators.

The onlyDone animation shows all done items while hiding all to-do items.
This could be implemented by first showing all items with the showAll anima-
tion, since an item might have been hidden by a previous action, and then hiding
all to-do items with the hideToDo animation. The definition is given below, while
the definitions of showAll and hideToDo are omitted for brevity.

onlyDoneNaive = do showAll; hideToDo

However, we only intend to show completed items if needed. So instead we
first check how many done items there are, if there are more than zero we play
the previous version of onlyDone, otherwise we only hide the unfinished items.

onlyDone = do

cond <- doneItemsGt0 -- check if more than 0 ’done’ items

if cond then onlyDoneNaive else hideToDo

However, this formulation uses monadic features and is thus not inspectable.
To make it inspectable, we utilize a custom combinator ifThenElse. We revisit
this example in more detail in Section 5.

onlyDone = ifThenElse doneItemsGt0 onlyDoneNaive hideToDo

For this new combinator, we can define custom ways to inspect it. Since each
branch might have a different duration, we do not choose to extract the duration
but rather the maximum duration of the animation.

onlyDoneMaxDuration = maxDuration onlyDone -- = 1

Sections 2 and 3 gave a look and feel of the features of PaSe. In the following
sections, we delve deeper into the internals of the implementation.

8 R. P. Pieters and T. Schrijvers

4 Implementation of PaSe

This section implements the previously introduced operations and redefines the
animations to show the resulting type signature. We develop PaSe in the style of
the mtl library10 which implements monadic effects using type classes [10]. This
style is also called the finally tagless approach [3]. However, because the PaSe
classes are not subclasses of Monad, they leave room for inspectability.

4.1 Specifying Basic Animations

The mtl library uses type classes to declare the basic operations of an effect.
Similarly, we specify the linearTo operation using the LinearTo type class.

class LinearTo obj f where

linearTo :: Traversal’ s Float -> Duration -> Target -> f ()

The traditional mtl style would add a Monad f superclass constraint. As
it hinders inspectability, we defer the addition of this constraint to the user.
This allows the definition of animations which are, for example Applicative, if
inspectability is needed or Monad if it is not.

The linearTo function is used to specify basic animations like line1Out,
line2In, menuSlideIn, and appFadeOut from Section 2. As an example, we
redefine line1Out with its type signature; the others are similar.

line1Out :: (LinearTo Application f) => f ()

line1Out = linearTo (navbar . underline1 . width) (For 0.25) (To 0)

4.2 Specifying Composed Animations

Section 2 used the combinators sequential and parallel for composing ani-
mations. In this section, we describe these combinators in more detail.

Sequential Composition We reuse the Functor-Applicative-Monad hierar-
chy for sequencing animations.

ehe liftA2 function from the Applicative class, which has type
Applicative f => (a -> b -> c) -> f a -> f b -> f c, takes two animations f a

and f b and returns a new animation which plays them in order. The final result
of the animation is of type c, which is obtained by using the function a -> b -> c

and applying the results of the two played animations to it.
The >>= function from the Monad class, which has type Monad f => f a ->

(a -> f b), takes an animation f a and then feeds the result of this animation
into the function a -> f b to play the animation f b.

The sequential function is a specialization of the liftA2 function. It only
applies to animations with a () return value, and trivially combines the results.

10 http://hackage.haskell.org/package/mtl

http://hackage.haskell.org/package/mtl

PaSe: An Extensible and Inspectable DSL for Micro-Animations 9

sequential :: (Applicative f) => f () -> f () -> f ()

sequential f1 f2 = liftA2 (_ _ -> ()) f1 f2

Hence, the type signature for selectBtn2Anim contains an (Applicative f)

constraint in addition to the (LinearTo Application f) constraint.

selectBtn2Anim :: (LinearTo Application f, Applicative f) => f ()

selectBtn2Anim = line1Out ‘sequential‘ line2In

Parallel Composition We create our own Parallel type class for the parallel
function11. Its liftP2 function has the same signature as liftA2, but the
intended semantics of the liftA2 implementation is parallel rather than se-
quential composition. Technically they are interchangeable, but the relation of
Applicative to Monad makes it more sensible for sequential composition seman-
tics. The parallel function is a specialization of liftP2.

class Parallel f where

liftP2 :: (a -> b -> c) -> f a -> f b -> f c

parallel :: (Parallel f) => f () -> f () -> f ()

parallel f1 f2 = liftP2 (_ _ -> ()) f1 f2

With that in place we can give a type signature for menuIntro.

menuIntro :: (LinearTo Application f, Parallel f) => f ()

menuIntro = menuSlideIn ‘parallel‘ appFadeOut

4.3 Running Animations

Now we create a new Animation data type that instantiates the above type
classes to interpret PaSe programs as actual animations. We briefly summarize
this implementation here and refer for more details to our codebase.12

The Animation data type, defined below, models an animation. It takes the
current state s and the time elapsed since the previous frame. It produces a new
state for the next frame, the remaining unused time and either the remainder of
the animation or, if there is no remainder, the result of the animation. Note that
the output is wrapped in a type constructor m to embed custom effects. We need
the unused time when there is more time between frames than the animation
uses. Then, the remaining time can be used to run the rest of the animation.

newtype Animation s m a = Animation { runAnimation ::

s -> -- previous state

Float -> -- time delta

m (s -- next state

, Either (Animation s m a) a -- remainder / result

, Maybe Float)} -- remaining delta time
11 The Alternative class (https://en.wikibooks.org/wiki/Haskell/Alternative and

MonadPlus) is not suitable as the laws are not the same.
12 https://github.com/rubenpieters/anim eff dsl/tree/master/code

https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus
https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus
https://github.com/rubenpieters/anim_eff_dsl/tree/master/code

10 R. P. Pieters and T. Schrijvers

LinearTo Instance The linearTo implementation of Animation constructs
the new state, calculates the remainder of the animation and the remaining
delta time. The difference between the linearTo duration and the frame time
determines whether there is a remaining linearTo animation or remaining time.

Examples We illustrate the behaviour on a tuple state (Float, Float), of an
x and y value. The right animation transforms the x value to 50 over 1 second.

right :: (LinearTo (Float, Float) f) => f ()

right = linearTo x (For 1) (To 50)

We run it for 0.5 seconds by applying it to the runAnimation function,
together with the initial state (s0 = (0,0)) and the duration 0.5. We instantiate
the m type constructor inside Animation with Identity as no additional effects
are needed; this means that the result can be unwrapped with runIdentity.

(s1, remAn1, remDel1) = runIdentity (runAnimation right s0 0.5)

-- s1 = (25.0, 0.0) | remAn1 = Left anim2 | remDel1 = Nothing

Running right for 0.5 seconds uses all available time and yields the new
state (25, 0). The remainder of the animation is the right animation with its
duration reduced by 0.5, or essentially linearTo x (For 0.5) (To 50). Let
us run this remainder for 1 second.

(s2, remAn2, remDel2) = runIdentity (runAnimation anim2 s1 1)

-- s2 = (50.0, 0.0) | remAn2 = Right () | remDel2 = Just 0.5

Now the final state is (50, 0) with result () and remaining time 0.5.

Monad Instance For sequential animations we provide a Monad instance. Its
return embeds the result a inside the Animation data type. The essence of
the f >>= k case is straightforward: first, run the animation f, then pass its
result to the continuation k and run that animation. We return the result of the
animation, or, if there is an animation remainder, because the remaining time
was used up, we return that remainder.

Examples Let us define an additional animation up which transforms the y

value to 50 over a duration of 1 second. Additionally, we define an animation
rightThenUp which composes the right and up animations in sequence.

up :: (LinearTo (Float, Float) f) => f ()

up = linearTo y (For 1) (To 50)

rightThenUp :: (LinearTo (Float, Float) f, Applicative f) => f ()

rightThenUp = right ‘sequential‘ up

PaSe: An Extensible and Inspectable DSL for Micro-Animations 11

Running the rightThenUp animation for 0.5 seconds gives a similar result to
running right for 0.5 seconds. We obtain the new state (25, 0), an animation
remainder anim2 and there is no remaining time. Now the animation remainder
is the rest of rightThenUp, which is half of right and up. So, when we run
this animation remainder for 1 second, it will run the second half of right and
the first half of up. This results in the state (50, 25), the animation remainder
anim3 and no remaining delta time. This animation remainder is of course the
second half of the up animation. If we continue to run that remainder, for example
for 1 second, then we get the final state (50, 50) and the animation result ().

Parallel Instance The liftP2 implementation runs the animations f1 and f2

on the starting state. We match on the cases where f1 and f2 finish with a result
or an animation remainder and remaining time. We check which of the anima-
tions have finished and repackage them either into a result or a new remainder,
using the result combination function where appropriate. When the longest of
the two parallel animations is finished while not fully using the remaining delta
time, we continue running the remainder of the animation.

Examples Let us run the animations right and up in parallel, which means that
both the x and y value will increase simultaneously.

rightAndUp :: (LinearTo (Float, Float) f, Parallel f) => f ()

rightAndUp = right ‘parallel‘ up

The result of running this animation for 0.5 seconds gives the state (25, 25)

and no remaining time. If we continue the animation remainder we get the state
(50, 50) and 0.5 seconds of remaining time.

4.4 Inspecting Animations

To inspect animations we instantiate them with Const. It wraps an a value and
has a b phantom type parameter to trivially make it a functor.

newtype Const a b = Const { getConst :: a }

We might wonder why this extra work is necessary. After all, it is possible
to obtain the duration of an animation by running the animation and keeping
track of how long it takes. First, this is not an ideal approach for obtaining the
duration. We might obtain erroneous results when doing this on conditional an-
imations. Since only one branch of the conditional will be taken, while the other
branch with a different duration might be taken in reality. Also, this approach
is infeasible when there are effects embedded within the animation. Second, du-
ration is one possible inspection target. Another example is tracking the used
textures within an animation so they can be loaded automatically. For this to
be possible we must run the inspection before the animation runs for the first
time, since the textures must be loaded first.

12 R. P. Pieters and T. Schrijvers

Inspecting LinearTo To obtain the duration of a linearTo animation, we
embed the duration in the Const wrapper.

instance LinearTo obj (Const Duration) where

linearTo _ duration _ = Const duration

Inspecting Applicative It is not possible to inspect animations with a Monad

constraint, but it is possible for animations with an Applicative constraint.
The Const data type is not the culprit here, but rather the >>= method of the
Monad class, which contains the limiting factor: a continuation function a -> m b.

Inspecting Parallel The duration of two parallel animations is the maximum
of their durations. The Par (Const Duration) instance implements this.

instance Par (Const Duration) where

liftP2 _ (Const x1) (Const x2) = Const (max x1 x2)

Examples The duration function is a specialization of the unwrapper function
of the Const data type, namely getConst. We can feed our previously defined
animations selectBtn2Anim and menuIntro from Section 2 to this function and
obtain their durations as a result.

duration :: Const Duration a -> Duration

duration = getConst

selectBtn2AnimDuration :: Duration

selectBtn2AnimDuration = duration selectBtn2Anim -- = For 1.0

menuIntroDuration :: Duration

menuIntroDuration = duration menuIntro -- = For 0.5

When we try to retrieve the duration of a monadic animation, there is an
error from the compiler: there is no Monad instance for Const Duration.

complicatedAnimDuration :: Duration

complicatedAnimDuration = duration complicatedAnim

-- No instance for (Monad (Const Duration))

4.5 Adding a Custom Operation

Custom operation are added by defining a corresponding class. For example, if
we want to add a set operation, then we create the corresponding Set class.

class Set obj f where set :: Lens’ obj a -> a -> f ()

Now, an animation using the set operation will incur a Set constraint.

PaSe: An Extensible and Inspectable DSL for Micro-Animations 13

checkIcon :: (Set CompleteIcon f, ...) => f ()

checkIcon = do ...; set (checkmark . color) green; ...

To inspect or run such an animation, we also need to provide instances for
the Animation and Const data types. In the Animation instance, we alter the
previous state by setting the value targeted by the lens to a. The duration of a
set animation is 0, which is what is returned in the Duration instance.

instance (Applicative m) => Set obj (Animation obj m) where

set lens a = Animation $ \obj t -> let

newObj = Lens.set lens a obj

in pure (newObj, Right (), Just t)

instance Set obj (Const Duration) where

set _ _ = Const (For 0)

5 Interaction Between Inspectability and Expressivity

Haskell DSLs are typically monadic because the >>= combinator provides great
expressive power. Yet, this power also hinders inspectability. This section shows
how to balance expressiveness and inspectability with a custom combinator.
This feature is opt-in in the sense that it is only required when inspectability
is required. If that is no concern, then it is no problem to work with the Monad

constraint.
Let us revisit the onlyDone animation from Section 3.3. The following defi-

nition imposes a Monad constraint on f, making the animation non-inspectable.

onlyDone :: (LinearTo Application f, Get Application f,

Set Application f, Monad f, Parallel f) => f ()

onlyDone = do

cond <- doneItemsGt0

if cond then onlyDoneNaive else hideNotDone

However, there is duration-related information we can extract. For example,
the maximum duration is the largest duration of the two branches.

To express this idea in PaSe we introduce an explicit combinator to replace
this particular use of >>=, namely an if-then-else construction.

class IfThenElse f where

ifThenElse :: f Bool -> f a -> f a -> f a

This is similar to the handle combinator from the DynamicIdiom class [21]
and the ifS combinator from the Selective class [18].

Now we can reformulate onlyDone in terms of this ifThenElse combinator13.

13 Using GHC’s RebindableSyntax extension, it is possible to use the builtin
if ... then ... else ... syntax.

14 R. P. Pieters and T. Schrijvers

onlyDone :: (LinearTo Application f, Get Application f,

Set Application f, Applicative f, Parallel f, IfThenElse f)

=> f ()

onlyDone = ifThenElse doneItemsGt0 onlyDoneNaive hideNotDone

We implement an appropriate Animation instance for IfThenElse.

instance (Monad f) => IfThenElse (Animation obj f) where

ifThenElse fBool thenBranch elseBranch = do

bool <- fBool

if bool then thenBranch else elseBranch

Now, we can retrieve the maximum duration, using the newtype MaxDuration
to signify this. The instance for IfThenElse retrieves the durations of the then

and else branches and adds the greater value to the duration of the preceding
animation inside the condition.

instance IfThenElse (Const MaxDuration) where

ifThenElse (Const (MaxDur durCond)) (Const (MaxDur durThen))

(Const (MaxDur durElse)) =

Const (MaxDur (durCond + max durThen durElse))

This allows us to retrieve the maximum duration of the onlyDone animation.

onlyDoneMaxDuration :: MaxDuration

onlyDoneMaxDuration = maxDuration onlyDone -- = MaxDur 1.0

6 Interaction Between Callbacks and Inspectability

Many JavaScript animation libraries14 exist, most of which allow the user to add
custom behavior (which the library has not foreseen) through callbacks. A good
example is the GreenSock Animation Platform (GSAP), a widely recommended
and mature JavaScript animation library with a variety of features.

6.1 Working with GSAP

TweenMax objects are the GSAP counterpart of the linearTo operation. Their
arguments are similar: the object to change, the duration, and the target value
for the property. For example, animation right moves box1 to the right:

const right = new TweenMax("#box1", 1, { x: 50 });

We can add animations to a TimeLineMax to create a sequential animation.
Below, we create rightThenDown which moves box1 to the right and then down.

14 Examples: https://greensock.com, https://animejs.com, and https://popmotion.io.

https://greensock.com
https://animejs.com
https://popmotion.io

PaSe: An Extensible and Inspectable DSL for Micro-Animations 15

const rightThenDown = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }))

.add(new TweenMax("#box1", 1, { y: 50 }));

The add method takes the position on the timeline as an optional paramter.
If we position both animations at point 0 on the timeline, they run in parallel.
For example, the both animation below moves both box1 and box2 in parallel.

const both = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }), 0)

.add(new TweenMax("#box2", 1, { x: 50 }), 0);

Timelines can also be embedded within other timelines.

const embedded = new TimelineMax({ paused: true })

.add(both.play())

.add(new TweenMax("#box1", 1, { y: 50 }), 0);

6.2 Callbacks and Inspectability

GSAP provides features related to inspectability. For example, we can use the
totalDuration method to return the total duration of an animation. Ordinary
animations correctly give their total duration when queried. For example, query-
ing the duration of embedded correctly returns 2.

const embeddedDuration = embedded.totalDuration(); // = 2

However, if we want to provide animations similar to onlyDone, which con-
tains an if-then-else, then the duration returned is not what we expect. The
add method is overloaded and can also take a callback as parameter. Using the
callback parameter we can embed arbitrary effects and control flow. For exam-
ple, we can create a conditional animation condAnim, for which a duration of
1 is returned. This is because any callbacks that are added to the timeline are
considered to have duration 0, even if an animation is played in that callback.

The resulting duration of 1 is different from the expected total duration of
the animation, which is 2. Of course, in general the duration of the animations in
both branches could differ, which is what makes it difficult to provide a procedure
for calculating the duration of an animation in this form.

const condAnim = new TimelineMax({ paused: true })

.add(both.play())

.add(() => { if (cond) { new TweenMax("#box1", 1, { x: 50 }) }

else { new TweenMax("#box2", 1, { x: 50 }) } });

const condAnimDuration = condAnim.totalDuration() // = 1

16 R. P. Pieters and T. Schrijvers

6.3 Relevance of Duration in Other Features

A wrongly calculated duration becomes more problematic when another feature
relies on this calculation. The relative sequencing feature needs the duration
of the first animation, so the second animation can be added with the correct
offset. For example, we can specify the position parameter -=0.5 to specify that
it should start 0.5 seonds before the end of the previous animation.

const bothDelayed = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }), 0)

.add(new TweenMax("#box2", 1, { x: 50 }), "-=0.5");

This feature differs from ordinary sequencing such as with sequential. When
we state that animation B must play 0.5 seconds before the end of animation A,
then it is not possible to wait until animation A has finished to start running
animation B. This is because animation B should have started playing for 0.5
seconds already. When we have the duration of animation A available, animation
B can be appropriately scheduled.

This feature behaves somewhat unexpectedly when combined with a con-
ditional animation. In the relativeCond animation below we add a basic an-
imation followed by a conditional animation. Then we add an animation with
a relative position. The result is that the relative position is calculated with
respect to the duration of the animations before it, which was a duration of 1.

const relativeCond = new TimelineMax({ paused: true })

.add(new TweenMax("#box1", 1, { x: 50 }), 0)

.add(() => { if (cond) { new TweenMax("#box1", 1, { x: 100 });

} else { new TweenMax("#box1", 1, { x: 0 }); } })

.add(new TweenMax("#box2", 1, { x: 50 }), "-=0.5");

Predicting the resulting behavior becomes much more complicated when con-
ditional animations are embedded deep inside complex timelines and cause er-
roneous duration calculations. Clearly, being more explicit about control flow
structures and their impact on inspectability like in PaSe helps providing a
more predictable interaction between these features.

6.4 Relative Sequencing in PaSe

While not yet ideal from a usability perspective,15 PaSe does enable correctly
specifying relative sequential compositions by means of relSequential.

relSequential :: forall c g.

(c (Const Duration), c g, Applicative g, Delay g) =>

(forall f. c f => f ()) -> g () -> Float -> g ()

relSequential anim1 anim2 offset = let

dur = getDuration (duration anim1)

in anim1 ‘sequential‘ (delay (dur + offset) *> anim2)

15 It requires AllowAmbiguousTypes (among other extensions) and explicitly instanti-
ating the constraint c at the call-site.

PaSe: An Extensible and Inspectable DSL for Micro-Animations 17

Because this definition requires instances instantiated with Const Duration,
it only works for animations whose duration can be analyzed. Now, we can
correctly compose conditional animations sequentially using relative positioning.
We use the relMaxSequential function to sequence animations with a maximum
duration.

-- create synonym for multiple constraints

class (LinearTo Float f, IfThenElse f) => Combined f where

instance (LinearTo Float f, IfThenElse f) => Combined f where

relCond :: (LinearTo Float f, IfThenElse f, Applicative f) => f ()

relCond = relMaxSequential @Combined anim1 anim2 (-0.5)

7 Use Case

This section compares an implementation of a simplified Pac-Man game (Fig-
ure 5) in Haskell with PaSe16 and TypeScript with GSAP17 both quantitatively
and qualitatively. The quantitative evaluation compares development time and
lines of code. The qualitative one compares different aspects of the libraries.

Fig. 5: Screenshot of the Pac-Man application.

7.1 Quantitative Evaluation

This section compares the PaSe and GSAP implementations on quantitative
criteria. We consider the development time and lines of code for each module.

– Development Time The Haskell application was developed in ∼1.5 work-
ing days, while the TypeScript application took ∼1 working day. We consider
this approximately the same development time as the Haskell application was
developed first, and thus contains design work shared by both applications.
The developer is proficient in both languages.

16 https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples/Pacman
17 https://github.com/rubenpieters/pacman-ts

https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples/Pacman
https://github.com/rubenpieters/pacman-ts

18 R. P. Pieters and T. Schrijvers

Table 1: Lines of code comparison (including whitespace)

Module Haskell/PaSe (LOC) % TypeScript/GSAP (LOC) %

AnimDefs 127 21% 197 32%
Anims 43 7% 39 6%
Field 48 8% 77 12%
Game 130 21% 113 18%
Main 36 6% 23 4%
Sprite 45 7% / /
Textures 34 6% 13 2%
Types 10 2% 3 0%
View 139 23% 158 25%
Total 612 100% 623 100%

– Lines of Code (LOC) Table 1 contains the LOC data (including whites-
pace) for both applications. Their total LOCs are roughly the same. However,
the Haskell code implements its own functionality for sprites and textures
while we used the existing Sprite class of the PixiJS library in TypeScript.

– Relative LOC Table 1 also contains the relative LOCs. The GSAP ani-
mation definitions (AnimDefs) are slightly bigger because we had to embed
effects in the animations due to differences in the used graphics library,
and because of TypeScript’s relative verbosity. Using the timeline feature of
GSAP, the code for simple animations is comparable to PaSe. However for
more complex animations and those requiring embedded effects, there are
some differences which we discuss in more detail in the qualitative evaluation.

7.2 Qualitative Evaluation

This section compares PaSe and GSAP on five qualitative criteria.

– Eco-system Animations are not created in isolation; they need to be cou-
pled to a graphical backend to display them on the screen. GSAP’s maturity
makes it a clear winner here. It is well integrated with the browser and sup-
ports a rich set of features such as a variety of plugins, compatibility across
browsers and support for animating a large range of DOM elements. Yet, for
Pac-Man we only needed lenses for our own user-defined state.

– Workflow It is important that animations can be specified easily and con-
cisely. Creating pure animations, without any embedded effects, are equally
convenient in GSAP and in PaSe. However, more complex interactions with
effects and control flow are simpler in PaSe. We saw this in the Pac-Man
use case when implementing particle animations. A particle animation is an
animation that creates an object, animates it and then destroys it again. We
implemented a general wrapper for such animations which takes as input a
function Int -> Animation, where the Int is the unique particle identifier,
and a creation and deletion function for the particle. In the GSAP library

PaSe: An Extensible and Inspectable DSL for Micro-Animations 19

we have to add the function to the timeline as a callback, which means its
duration is considered to be 0. This is problematic because the deletion of
the particle should occur after its animation. This means that we are forced
to manually calculate and provide the duration for the particle animation.

– Performance Both libraries perform equally acceptable on Pac-Man: no vis-
ible glitches or lag at 60 frames per second (FPS) on an Intel core i7-6600U at
2.60 GHz with 8GB memory. We have also implemented a benchmark simi-
lar to GSAP’s speed test18, which tests a large parallel animations. GSAP is
slightly more optimized currently as it handles 500 parallel animations at 60
FPS instead of PaSe’s 400. This could be remedied by further performance
improvements of PaSe, like fusing multiple parallel animations or improving
the Animation data structure, which are future work.

– Extensibility & Inspectability Extensibility and inspectability are key
features of PaSe. Both were useful for Pac-Man. Inspectability allowed ex-
tracting all used textures in the animations to automate their loading. Ex-
tensibility enabled the definition of the particle effect mentioned earlier. We
created a new WithParticle type class and implemented both an Animation

instance and a Const instance for the texture inspection. GSAP does not sup-
port inspectability, and thus we did not implement the automatic loading of
textures. The particle animation function was implemented with callbacks
and implicit side-effects, which TypeScript allows anywhere.

8 Future Work

Some general improvements can be made regarding supporting new backends,
more features and improving performance.

We chose the MTL style for this paper, as we believe it is simpler presentation-
wise. However, an initial encoding, which is more typical for algebraic effects and
handlers, can provide benefits in areas such as the implementation of the relative
sequencing. This comparison is another avenue for future work.

An aspect not touched in this paper is conflict management. A conflict ap-
pears when the same property is targeted by different animations in parallel. For
example, if we want to change a value both to 0 and 100 in parallel, what should
this animation look like? PaSe does no conflict management, and the anima-
tion might look stuttery. GSAP, for example, resolves this by only enabling the
most recently added animation. However this strategy is not straightforwardly
mapped to the context of PaSe. Inspectability could provide a solution for this
problem by providing the possibility to detect conflicts.

9 Related Work

Functional Reactive Programming The origins of functional reactive program-
ming (FRP) lie in the creation of animations [4], and many later developments
use FRP as the basis for purely functional GUIs.

18 https://greensock.com/js/speed.html

https://greensock.com/js/speed.html

20 R. P. Pieters and T. Schrijvers

PaSe focuses on easily describing micro-animations, which differ from general
animations as considered by FRP. The latter can typically be described by
a time-paramterized picture function Time -> Picture. While a subset of all
possible animations, micro-animations are not easily described by such a function
because many small micro-animations can be active at the same time and their
timing depends on user interaction.

We have supplied an implementation of PaSe on top of a traditional event-
based framework, but it is interesting future work to investigate an implemen-
tation of the linearTo, sequential and parallel operations in terms of FRP
behaviours and events.

Animation Frameworks Typical micro-animation libraries for web applications
(with CSS or JavaScript) and animation constructions in game engines provide a
variety of configurable pre-made operations while composing complex animations
or integrating new types of operations is difficult. PaSe focuses on the creation
of complex sequences of events while still providing the ability to embed new
animation primitives. We have looked at GSAP as an example of such libraries
and some of the limits in combining extensibility with callbacks and inspectabil-
ity. PaSe is an exercise in improving this combination of features forward in a
direction which is more predictable for the user.

Planning-Based Animations PaSe shares similarities with approaches which
specify an animation as a plan which needs to be executed [12,17]. An animation
is specified by a series of steps to be executed, the plan of the animation. The co-
ordinator, which manages and advances the animations, is implemented as part
of the hosting application. PaSe realizes these plan-based animations with only
a few core principles and features the possibility of adding custom operations
and inspection. A detailed comparison with these approaches is difficult, since
their works are very light on details of the actual implementation aspect.

Inspectable DSLs Some DSLs for parsing [9,2,15], non-determinism [11], remote
execution [5,6] and build systems [19] focus on inspectability aspects, yet none
of them provide extensibility and expressiveness in addition to inspection.

10 Conclusion

We have presented PaSe, an extensible and inspectable DSL for micro-animations.
PaSe focuses on compositional animations using sequential and parallel anima-
tions as basic building blocks. This is in contrast with other animation libraries
typically focused on sequential composition and callbacks with implicit effects.

We utilized a to-do list application use case to explain the features of PaSe. In
this use case we showed the additional features of PaSe: extensiblity, inspectabil-
ity and expressivity. We argue that the callback style of providing extensibility
hurts the inspectability aspect of animations, which is found in for example
the GreenSock Animation Platform. An implementation of the Pac-Man game
confirms that this can be a problem even in simple applications.

PaSe: An Extensible and Inspectable DSL for Micro-Animations 21

References

1. Bederson, B.B., Boltman, A.: Does animation help users build men-
tal maps of spatial information? In: INFOVIS 1999. pp. 28–35 (1999).
https://doi.org/10.1109/INFVIS.1999.801854

2. Capriotti, P., Kaposi, A.: Free applicative functors. In: MSFP 2014. pp. 2–30
(2014). https://doi.org/10.4204/EPTCS.153.2

3. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009). https://doi.org/10.1017/S0956796809007205

4. Elliott, C., Hudak, P.: Functional reactive animation. In: ICFP 1997. pp. 263–273
(1997). https://doi.org/10.1145/258948.258973

5. Gibbons, J.: Free delivery (functional pearl). In: Haskell 2016. pp. 45–50 (2016).
https://doi.org/10.1145/2976002.2976005

6. Gill, A., Sculthorpe, N., Dawson, J., Eskilson, A., Farmer, A., Grebe, M., Rosen-
bluth, J., Scott, R., Stanton, J.: The remote monad design pattern. In: Haskell
2015. pp. 59–70 (2015). https://doi.org/10.1145/2804302.2804311

7. Gonzalez, C.: Does animation in user interfaces improve decision making? In: CHI
1996. pp. 27–34 (1996). https://doi.org/10.1145/238386.238396

8. Heer, J., Robertson, G.G.: Animated transitions in statistical data
graphics. IEEE Trans. Vis. Comput. Graph. 13(6), 1240–1247 (2007).
https://doi.org/10.1109/TVCG.2007.70539

9. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111
(2000). https://doi.org/10.1016/S0167-6423(99)00023-4

10. Jones, M.P.: Functional programming with overloading and higher-order polymor-
phism. In: Advanced Functional Programming, First International Spring School
on Advanced Functional Programming Techniques, B̊astad, Sweden, May 24-30,
1995, Tutorial Text. pp. 97–136 (1995). https://doi.org/10.1007/3-540-59451-5 4

11. Kiselyov, O.: Effects without monads: Non-determinism - back
to the meta language. In: ML/OCaml 2017. pp. 15–40 (2017).
https://doi.org/10.4204/EPTCS.294.2

12. Kurlander, D., Ling, D.T.: Planning-based control of interface animation. In: CHI
1995. pp. 472–479 (1995). https://doi.org/10.1145/223904.223968

13. van Laarhoven, T.: CPS-Based Functional References (2009), https://www.twanvl.
nl/blog/haskell/cps-functional-references

14. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.
In: POPL 1995. pp. 333–343 (1995). https://doi.org/10.1145/199448.199528

15. Lindley, S.: Algebraic effects and effect handlers for idioms and arrows. In: WGP
2014. pp. 47–58 (2014). https://doi.org/10.1145/2633628.2633636

16. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008). https://doi.org/10.1017/S0956796807006326

17. Mirlacher, T., Palanque, P.A., Bernhaupt, R.: Engineering ani-
mations in user interfaces. In: EICS 2012. pp. 111–120 (2012).
https://doi.org/10.1145/2305484.2305504

18. Mokhov, A., Lukyanov, G., Marlow, S., Dimino, J.: Selective applicative functors.
ICFP 2019 pp. 90:1–90:29 (2019). https://doi.org/10.1145/3341694

19. Mokhov, A., Mitchell, N., Peyton Jones, S.: Build systems à la carte. PACMPL
2(ICFP 2018), 79:1–79:29 (2018). https://doi.org/10.1145/3236774

20. Wadler, P.: Comprehending monads. In: LFP 1990. pp. 61–78 (1990).
https://doi.org/10.1145/91556.91592

https://doi.org/10.1109/INFVIS.1999.801854
https://doi.org/10.4204/EPTCS.153.2
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/2976002.2976005
https://doi.org/10.1145/2804302.2804311
https://doi.org/10.1145/238386.238396
https://doi.org/10.1109/TVCG.2007.70539
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1007/3-540-59451-5_4
https://doi.org/10.4204/EPTCS.294.2
https://doi.org/10.1145/223904.223968
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2633628.2633636
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/2305484.2305504
https://doi.org/10.1145/3341694
https://doi.org/10.1145/3236774
https://doi.org/10.1145/91556.91592

22 R. P. Pieters and T. Schrijvers

21. Yallop, J.: Abstraction for web programming. Ph.D. thesis, University of Edin-
burgh, UK (2010)

	PaSe: An Extensible and Inspectable DSLfor Micro-Animations

