
ZU064-05-FPR jfp2egui 23 March 2020 16:13

Under consideration for publication in J. Functional Programming 1

Generalized Monoidal Effects And Handlers

RUBEN P. PIETERS, TOM SCHRIJVERS
KU Leuven, Leuven, Belgium

EXEQUIEL RIVAS
Inria, Paris, France

(e-mail: {ruben.pieters, tom.schrijvers}@cs.kuleuven.be, exequiel.rivas-gadda@inria.fr)

Abstract

Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive
effectful operations and separating the syntax from the interpretation of these operations. However,
the scope of conventional handlers is limited as not all side effects are monadic in nature.

This paper generalizes the notion of algebraic effects and handlers from monads to generalized
monoids, which notably covers applicative functors and arrows as well as monads. For this purpose
we switch the category theoretical basis from free algebras to free monoids. In addition, we show
how lax monoidal functors enable the reuse of handlers and programs across different computation
classes, for example handling applicative computations with monadic handlers.

We motivate and present these handler interfaces in the context of build systems. Tasks in a build
system are represented by a free computation and their interpretation as a handler. This use case is
based on the work of Mokhov et al. (2018).

1 Introduction

Since their introduction to purely functional programming, monads (Moggi, 1991; Wadler,
1990) have monopolized modeling computational effects. This changed with the proposal
of new classes of effectful computations: applicative functors (McBride & Paterson, 2008)
and arrows (Hughes, 2000), which capture types of side effects amenable to static analysis
at the cost of expressiveness.

In a separate development, algebraic effects and handlers (Plotkin & Pretnar, 2009) were
created as a more convenient formulation of monadic effects and programs. Their success
is largely due to their easier integration with impure functional and imperative languages
to enable user-defined effects. This approach encodes effects as operations represented by
the signature of an algebraic theory. The semantics of these effects is represented by an
interpretation for the operations.

Although the conventional handlers capture monadic effects well, other computation
classes such as applicative functors and arrows are not covered. To remedy this situation,
Lindley (2014) presented a language design supporting handlers for the classic triad of
effects: monad, arrow and applicative functor. This is backed by a type system verifying
the class of expressed computations. However, Lindley’s exposition lacks an extension of
the category theoretical underpinnings, introduced by Plotkin and Pretnar.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

2 R. P. Pieters, E. Rivas and T. Schrijvers

This work aims to provide this extension by reviewing the definition of handlers to
include non-monadic computations, notably applicative functors and arrows. For this pur-
pose we leverage the framework of Rivas & Jaskelioff (2017) which characterizes the triad
of effects in terms of generalized monoids. This is used to replace the conventional free
algebra approach, with handling rules based on the unique algebra homomorphism, by a
free monoid approach, with handling rules based on the unique monoid homomorphism.

Specifically our contributions are:
• We present a generic framework to derive handlers for monoids in monoidal cate-

gories.
• We give a derivation of handlers for the classes of applicative, arrow and monadic

effects. Since the derived monadic handlers are equally expressive as the conven-
tional free algebra handlers, we see the monoidal handlers as an extension to the free
algebra handlers.

• We present a method for reusing handlers and programs, by employing a monoidal
adjunction between the relevant monoidal categories.

• We present the build system model introduced by Mokhov et al. (2018) as a moti-
vating use case for these generalized handlers.

Section 2 introduces and motivates the concept of non-monadic handlers. Section 3
introduces the relevant category theoretic background related to algebraic effects and han-
dlers, presenting them as free algebras. Section 4 derives these handlers from the perspec-
tive of free monoids. Section 5 derives applicative and arrow handlers from the idea of free
monoids. Section 6 shows an approach to reuse handlers and computations across different
monoidal categories. Section 7 describes the relation with the original Haskell use case
and describes some uses for arrow build systems. Section 8 presents and discusses related
work.

This paper is based on two earlier publications: “Handlers for Non-Monadic Computa-
tions” (Pieters et al., 2017) and “Relating Idioms, Arrows and Monads from Monoidal
Adjunctions” (Rivas, 2018). The main change compared to these earlier works is the
addition of the motivating use case of build systems. The build system use case has replaced
the previous motivation section (Section 2). The section showcasing handler examples has
been reworked to fit this new use case (Section 5). The section describing the reuse of
handlers and programs using monoidal adjunctions (Section 6) has been updated and made
consistent with the earlier work on monoidal adjunctions (Rivas, 2018). Section 7 covers
the relation between the build systems paper (Mokhov et al., 2018) and monoidal effects
and handlers in more detail and shows how their work can be extended by using arrows;
this section was not present in the earlier publications.

2 Motivation

The original algebraic effects and effect handlers approach by Plotkin & Pretnar (2009)
covers the space of what we call monadic handlers. These monadic handlers are the con-
ventional approach currently used when languages implement effect handlers.

This section elaborates on the difference between monadic and non-monadic handlers
and presents a use case involving non-monadic handlers. The examples are given in the
setting of a simple model for build systems.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 3

2.1 Notation in Code Examples

In the rest of the paper we use code samples to convey and illustrate our ideas. Code
samples are typeset in a teletype font and typically are located in separate code block. The
syntax is mostly based on Haskell syntax, with differences in several aspects. There is a
short overview of syntax in Table 1.

Type Signatures We deviate from Haskell syntax when giving type signatures by utilizing
a single colon, for example 1 : Int. The double colon is used for list concatenation, for
example [1, 2] :: [3, 4]. Type variables are also denoted with uppercase characters,
such as x : A, which mimicks the math notation.

Computations We use Haskell’s do-notation to present more readable syntax for compu-
tations created using various constructors. We assume that the reader is familiar with the
deconstruction of do-syntax into Haskell’s return and >>= constructors.

Additionally, we use the do-notation for expressing computations with different con-
structors, which are limited in expressive power compared to monadic computations. For
applicative computations this is similar to Haskell’s ApplicativeDo extension (2016),
and for arrow computations there is some similarity to Haskell’s arrow syntax (2001).

Computation types are denoted with an exclamation mark and the effect set after the
return value. For example, c : A ! {operation}, where A is the return value of com-
putation c and operation is an effect that might be present in c. The computation class
is also added as one of the effects, where M denotes monadic computations, Ap denotes
applicative computations and Ar denotes arrow computations. Pure values, or computations
with no possible effects, can either be denoted as A ! /0 or simply A.

Handlers Handlers are the consumers of effects, which in our case are introduced by com-
putations expressed in do-notation. The addition of handlers induces two syntax constructs:
handler and handle with.

The handler construct defines a new handler, it consists of several clauses which are
preceded by |. These clauses define how certain constructors are interpreted, utilizing their
inputs which are stated in brackets. For example, the clause | op (i : Int) -> f i

interprets the op constructor to f i, which utilizes the input i.
Handler types are denoted with a double arrow: =>. The input for a handler is a compu-

tation where the handled clauses might be present, and the output is a computation where
these effects are possibly removed.

The handle comp with h construct states that the computation comp is be handled by
the handler h. Intuitively the meaning of this is that, whenever a constructor is encountered
while executing the computation, the handler is consulted for the interpretation of that
constructor defined. The behaviour is more precisely defined in Section 3.2.

2.2 Motivating Use Case: Build Systems

Build systems automate a series of tasks for building dependent artifacts. Typically, these
artifacts are files on a file system. However, the setting in this article is the spreadsheet
setting following the examples of Mokhov et al. (2018), where the artifacts are cells in

ZU064-05-FPR jfp2egui 23 March 2020 16:13

4 R. P. Pieters, E. Rivas and T. Schrijvers

Table 1: Syntax Overview
Syntax Construct Example

Creating Computations
c = do

result <- operation input

return result

Computation Types c : A ! {operation, M}

Creating Handlers
h = handler

| op1 (param1: T) -> f param1

| op2 (param2: T) -> f param2

Handler Types h : A ! {op1, op2, . . .} => A ! {. . .}

Handling Computations handle h with c

a spreadsheet. Throughout the paper we illustrate examples with the motivating use case
of build systems. This use case is heavily inspired by the work of Mokhov et al. (2018),
which presents a functional model of build systems.

Describing Tasks The spreadsheet setting views spreadsheets according to the build sys-
tem model. In our examples, cells are uniquely identified by their name with type String
and contain values of type Int. A cell can refer to values of other cells, this is represented
by an operation fetch. The fetch operation takes a name as input and returns the value of
that cell. The computation contained in a cell is called a task, an example of such a task is
taskExample, which fetches the contents of cells "A1" and "A2" and adds them together
to create the value of this cell. Note that similar to Mokhov et al. (2018), we do not consider
cyclic calculations, and thus attaching this task to cell "A1" or "A2" is disallowed.

The computation is annotated with the type Int ! {fetch, Ap}, which means that
it returns an Int and contains the fetch operation. Additionally it only uses a limited
form of computation expressiveness, namely applicative, so Ap is also present in the set
of effects. The difference between the computation classes is explained in more detail in
Section 2.3.

taskExample : Int ! {fetch, Ap}

taskExample = do

a1 <- fetch "A1"

a2 <- fetch "A2"

return (a1 + a2)

Running Tasks The operations, such as fetch, used in these computations have no at-
tached meaning yet. The meaning of these operations are given by the interpretation with a
handler. For example, we can interpret taskExample by using the handler fetchConsole
which is defined below.

fetchConsole : A ! {fetch, M} => IO A

fetchConsole = handler

| val (x: A) -> return x (value clause)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 5

| fetch (cell: String, k: Int -> IO A) -> do

print ("cell: " ++ cell)

x <- readLn

k x (operation clause)

This handler requests the user to specify the values via the console for each cell. The
behaviour of a handler is specified by a value clause and an operation clause for each
handled operation. The value clause triggers on an evaluated computation without any
operations. This handler wraps the evaluated value of type A to an expected value of type
IO A. The operation clause triggers when the evaluated computation is an operation with a
continuation. It takes the input arguments as parameter p and the continuation as parameter
k. The former contains all data passed to the operation. The latter captures a resumption
point, which resumes the computation where the operation was called and introduces a
result. The computation does not resume if the continuation parameter is not invoked,
resulting in behaviour similar to exceptions.

The handler uses the standard monadic interface for handling computations, and thus
handles computations with monadic or lower expressiveness. This is signified in the type
signature by the input computation having the M class in its set of effects. This should be
seen as an upper bound on the input computation, since the handler is also applicable to
applicative or arrow computations.

An example of handling taskExample with fetchConsole is given below. The values
for "A1" and "A2" are requested and then the value of the task is given.

λ> handle taskExample with fetchConsole

cell: A1

5<Enter>

cell: A2

10<Enter>

15

Analyzing Dependencies In a build system we would like to analyze tasks, for example
to compute a list of dependencies for tasks. This information enables some optimizations
in our build system such as avoiding redundant building of duplicate tasks or parallelizing
independent tasks. Let us see what happens if we try to compute the list of dependencies
with a monadic handler.

handlerAnalyze : A ! {fetch, M} => [String]

handlerAnalyze = handler

| val (x: A) -> []

| fetch (cell: String, k: Int -> [String]) ->

[cell] ++ (k ?)

We encounter a problem in implementing the operation clause for fetch: We want
to combine the currently encountered dependency cell with the recursively computed
dependencies in the continuation k. However, to know what these dependencies are, we
have to pass the value of the current cell.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

6 R. P. Pieters, E. Rivas and T. Schrijvers

The problem is that we are implementing a monadic handler, which must be able to
handle all monadic computations. Consider taskDyn, a task which fetches the cell content
dynamically, meaning which cell is fetched is dependent on values from other cells.

taskDyn : Int ! {fetch, Ar}

taskDyn = do

a1 <- fetch "A1"

fetch ("B" ++ show a1)

For this case it is not possible to determine the list of fetched cells upfront since this is
dependent on the contents of "A1". Instead, we can use an applicative or arrow handler,
which is limited to computations with that respective expressiveness. This paper looks
at different handler interfaces derived from the category theoretical perspective of free
monoids, subsuming monadic handlers.

2.3 Different Classes of Computations

Before we continue, we want to give a better intuition for the different computation classes
used throughout the paper. We follow the distinction made by Lindley (2014) based on
having/not having data and control flow. Data flow implies that input to operations is
dependent on the results of previous operations. Control flow implies a dependency of
subsequent operations on results of previous operations.

Applicative Computations We start with the applicative computations. These compu-
tations are a static list of operations which can compute a final value from each of the
results. The taskExample computation, repeated below, is an example of an applicative
computation since the exact list of operations in the computation is completely static.

taskExample : Int ! {fetch, Ap}

taskExample = do

a1 <- fetch "A1"

a2 <- fetch "A2"

return (a1 + a2)

Arrow Computations Arrow computations introduce data flow, which means that the
input to operations can depend on results from previous operations. The taskDyn compu-
tation, repeated below, is an example of an arrow computation since the fetch operation
in the second line depends on the result of the previous fetch operation.

taskDyn : Int ! {fetch, Ar}

taskDyn = do

a1 <- fetch "A1"

fetch ("A" ++ show a1) (data flow)

Monadic Computations Monadic computations additionally have control flow, which
means that the choice of which subsequent operations should be invoked is dependent
on the result of previous operations.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 7

A simple example showcasing control flow is to use a conditional statement. In the
example taskControlFlow1 the contents of cell C1 are fetched and if it contains a 1 then
the contents of cell A1 are returned, otherwise the constant -1 is returned.

taskControlFlow1 : Int ! {fetch, M}

taskControlFlow1 = do

c1 <- fetch "C1"

if c1 == 1 (control flow)

then fetch "A1"

else return -1

These conditional statements have been considered separately before, such as in the
ArrowChoice class or the Selective class (2019). However, conditional statements on
their own do not fully capture the expressiveness of monadic computations.

The taskControlFlow2 example below exhibits both data and control flow. The con-
tents of cell A1 contains the amount of times the fetch operation needs to be executed. The
for function aggregates the results of calling fetch on each of the cell locations.
taskControlFlow2 : [Int] ! {fetch, M}

taskControlFlow2 = do

n <- fetch "A1"

repeat n (control/data flow)

where

repeat : Int -> [Int] ! {fetch, M}

repeat 0 = return []

repeat n = do

result <- fetch ("B" ++ show n)

return (result : repeat (n - 1))

Note that the above computation can technically be encoded using only infinite branch-
ing and data flow. However, we consider it as a monadic computation here as operationally
it is ineffecient to evaluate massively nested branches and analysis on infinite branches is
not likely give a productive result.

2.4 Analysis with Non-Monadic Handlers

Analyzing Dependencies with Applicative Handler The simplest computations to ana-
lyze are applicative computations like taskExample. To do this, we use use an applicative
handler. The applicative handler interface exposes the continuation differently, since we
have access to the recursively computed dependencies with the parameter l. It is possible
to access these dependencies, since this is statically known when restricted to applicative
computations. A simplified version of the handler implementation is given below, the full
version is discussed as iAnalyzeAp in Example 5.1.

handlerAnalyzeI : A ! {fetch, Ap} => [String]

handlerAnalyzeI = handler

| val (x: A) -> []

| fetch (cell: String, l: [String]) ->

cell :: l

ZU064-05-FPR jfp2egui 23 March 2020 16:13

8 R. P. Pieters, E. Rivas and T. Schrijvers

Handling the taskExample computation with this handler evaluates to the list of depen-
dencies, which is "A1" and "A2".

λ> handle taskExample with handlerAnalyzeI

["A1", "A2"]

Analyzing Dependencies with Arrow Handler While applicatives are easy to analyze,
they are also limited in what they can express. This might prevent us to describe the
computation we want. For example, the taskDyn computation earlier does not respect
the limitations of an applicative computation. Of course, arrow computations on the other
hand, have extra limitations on the analysis side. It is no longer possible to determine
all dependencies upfront. However, it is still possible to analyze the affected columns of
dependencies. To do this we have to distinguish between statically available parts of the
computation, the columns, and the dynamically available parts of the computation, the
rows. A simplified version of the handler implementation is given below, the full version
is discussed as iAnalyzeAr in Example 5.2.

handlerAnalyzeA : A ! {fetch, Ar} => [String]

handlerAnalyzeA = handler

| val (f: A -> B) -> []

| fetch (col: String, l: [String]) ->

col :: l

Handling the taskDyn computation with this handler evaluates to the list of affected
columns, which is "A" and "B".

λ> handle taskDyn with handlerAnalyzeA

["A", "B"]

Of course, any analysis which does not depend on the input to the operations, for
example counting the fetch operations, is equally applicable to applicative and arrow
computations.

Conclusion Attempting to handle a computation with an inappropriate handler, for exam-
ple handle taskDyn with handlerAnalyzeI should result in a runtime or, preferably,
a type error.

We have illustrated simple use cases of analysis with a non-monadic handler. More
complicated analysis includes parallelizing/batching operations, calculating a heat map
of operations/parameters such as location, or other calculations on statically available
information.

3 Background

This section introduces the necessary background on which the remainder of the paper is
based. We assume basic familiarity with common category theoretical concepts such as
functors, natural transformations and monads.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 9

3.1 Notational Conventions

We highlight some of the more specific notation here.

Category We reserve C to mean the category of the programming language under consid-
eration, with types as objects and functions between those types as morphisms. We assume
that this base category has (co-)products, exponentials and (co-)ends.

Morphisms Components of natural transformations usually have a subscript mentioning
their naturality, e.g. idA : A→ A is natural in A. Identity morphisms are denoted as the more
compact A : A→ A instead of idA : A→ A.

Isomorphisms We denote an isomorphism with f : A ∼= B : g, where f : A→ B and g :
B→ A are part of the two-sided inverse g◦ f = A and f ◦g = B. We leave out the names of
the functions if they are not important.

(Co-)Products We use A×B to denote products, in C this represents the tuple type (A,B).
We use A+B to denote coproducts, and [f ,g] to denote the unique morphism A+B→ X
constructed from f : A→ X and g : B→ X .

Exponential Objects We use AB to denote the exponentiation of A with B. In C exponen-
tial AB is the function type B -> A.

Algebra of a Functor An F-algebra with carrier A and action b is denoted by 〈A,b :
FA→ A〉.

(Co-)Ends We denote ends as
∫

A F(A,A) and co-ends as
∫ A F(A,A), for a bifunctor F :

A op×A →B. In C , ends can be understood as a universal type quantification ∀A. F(A,A),
while co-ends correspond to existential type quantification ∃A. F(A,A). Usually the type
quantifier ∀ is omitted when it is clear from context.

3.2 Algebraic Effects and Handlers

Plotkin & Pretnar’s definition of algebraic effects and handlers consists of two parts: the
operations, which introduce effects, and the handlers, which interpret them (Plotkin &
Pretnar, 2009).

Operations as Functors Operations, such as fetch, is be abstracted by endofunctors of
the form Σi =Pi×−Ni , where Ni is the arity of the operation, and Pi contains the parameters
of the operation. The former refers to the type of values which the operation introduces into
the computation, the latter refers to the type of values which the operation takes as input.
For example, fetch introduces an Int value, the cell content, and takes a String value,
the cell name. So, its corresponding functor is Σfetch = String×−Int.

The representation of all operations is obtained by constructing the coproduct of their
respective functors Σ = (P0×−N0)+ . . .+(Pn×−Nn).

ZU064-05-FPR jfp2egui 23 March 2020 16:13

10 R. P. Pieters, E. Rivas and T. Schrijvers

Operation Clauses as Σ-Algebras Each of the operation clauses in a monadic handler
gives an algebra for Σi, where i is the operation of interest. For example, the clause

| fetch (p: String,k: Int -> B) -> b: B (cfetch)

is represented by 〈B,cfetch : ΣiB→ B〉, a Σi-algebra. To refer to the function defined by this
clause, which is λ(p: String,k: Int -> B). b, we indicate its name after the clause
in brackets.

The combination of all operation clauses

| opi (pi: Pi,ki: Ni -> B) -> b: B (ci)

forms the Σ-algebra 〈B,c = [c0, . . . ,cn] : ΣB→ B〉.
The value clause

| val (a: A) -> b: B (v)

defines the function v : A→ B= λ(a: A). b .

Handling Rules as Equations Evaluating handle x with h, given a handler h, requires
both the value and operation rules. For example, if h is defined as:

h = handler

| val (a: A) -> . . .: B (v)
| opi (pi: Pi,ki: Ni -> B) -> . . .: B (ci)

The value rule triggers when no operations are left in a fully evaluated x, usually in the
form of return y. The result is defined as:

handle (x: A) with h = v x

The operation rule triggers when the evaluated computation is an operation opi. The
result is defined as:

handle (opi (p: Pi,k: Ni -> Σ∗A)) with h

= ci p (λn. handle (k n) with h)

Here, the structure Σ∗A represents a computation built from operations present in Σ, which
aims to return a value of type A. The parameter k denotes the continuation of the operation
call. For example, in:

taskExample = do

a1 <- fetch "A1"

a2 <- fetch "A2"

return (a1 + a2)

the continuation k of fetch "A1" is the function:

λ(a1: Int). do

a2 <- fetch "A2"

return (a1 + a2)

Syntax Constructors Desugaring of the do-notation is possible with the constructors
valA and opA. The former valA embeds an evaluated value of type A into Σ∗A, and
the latter opA embeds an operation into Σ∗A. With these constructors, the computation
taskExample is defined as:

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 11

taskExample =

opInt (fetch ("A1",(λ(a1: Int).

opInt (fetch ("A2",(λ(a2: Int).

valInt (a1 + a2)

)))

)))

These two constructors enable expressing the handling rules as pointfree equations. The
pointfree value and operation rules are respectively: handle ◦ valA = v and handle ◦
opA = ci ◦Σhandle.

Handlers for Free Algebras The elements from the previous section enable viewing
monadic handlers as free algebras:

Definition 3.1 (Free Σ-Algebra)
A free Σ-algebra on A in C consists of an object 〈Σ∗A,opA : Σ(Σ∗A)→ Σ∗A〉 in Σ-Alg(C)

together with a morphism valA : A → Σ∗A in C such that for any 〈B,c : ΣB → B〉 in
Σ-Alg(C) and morphism v : A→ B in C , there exists a unique algebra morphism handle :
〈Σ∗A,opA〉 → 〈B,c〉 in Σ-Alg(C) with handle◦valA = v.

The diagrams for the conditions are:

A Σ∗A Σ(Σ∗A) ΣB

B Σ∗A B

valA

v
handle

Σhandle

opA c

handle

The diagram on the left-hand side is the condition mentioned in the definition and
corresponds to the value rule equation. The diagram on the right-hand side is the condition
for a morphism in Σ-Alg(C), namely a Σ-algebra homomorphism, and corresponds to the
operation rule equation.

3.3 Monoids in Monoidal Categories

Rivas & Jaskelioff (2017) present a framework for different classes of side effects as (gen-
eralized) monoids in various monoidal categories. We reintroduce the relevant definitions
relating to monoidal categories in the following paragraphs.

Monoidal Category A monoidal category is a category which contains a notion of monoids
generalizing the monoids in Set, replacing the cartesian product with a general bifunctor.

Definition 3.2 (Monoidal Category)
A monoidal category is a tuple (D ,⊗, I,α,λ ,ρ), consisting of

a) a category D

b) a bifunctor ⊗ : D×D →D (also called the tensor)
c) a designated object I of D

ZU064-05-FPR jfp2egui 23 March 2020 16:13

12 R. P. Pieters, E. Rivas and T. Schrijvers

d) three natural isomorphisms

αA,B,C : A⊗ (B⊗C)→ (A⊗B)⊗C

λA : I⊗A→ A

ρA : A⊗ I→ A

such that the following diagrams commute:

A⊗ (B⊗ (C⊗D))
α //

A⊗α

��

(A⊗B)⊗ (C⊗D)
α // ((A⊗B)⊗C)⊗D

A⊗ ((B⊗C)⊗D)
α

// (A⊗ (B⊗C))⊗D

α⊗D

OO

A⊗ (I⊗B) α //

A⊗λ %%

(A⊗ I)⊗B

ρ⊗Byy
A⊗B

When it is clear from the context, we omit α , ρ and λ .

Monoid in Monoidal Category A monoid in a monoidal category is a generalization of
monoids in Set. The monoids from high-school algebra coincide with the notion of monoids
in Set with cartesian product. However, from this point on, whenever we mention monoid,
we mean the more general concept monoid in monoidal category.

Definition 3.3 (Monoid in Monoidal Category)
A monoid in a monoidal category is a tuple (M,e,m) where M is an object in a monoidal
category (D ,⊗, I,α,λ ,ρ). The unit e : I→M and the multiplication m : M⊗M→M are
morphisms in D such that the following diagrams commute:

(M⊗M)⊗M
m⊗M // M⊗M

m

��
M⊗ (M⊗M)

α

OO

M⊗m
// M⊗M m

// M

M⊗M
m

%%

M⊗ I
M⊗eoo

ρ

��
I⊗M

e⊗M

OO

λ

// M

Exponentials for Monoidal Categories The characterizing isomorphism of exponentials
can be generalized with tensors instead of products. This results in the isomorphism: b−c :
D(X⊗B,A)∼=D(X ,AB) : d−e. The evaluation morphism is generalized to evA : AB⊗B→
A = dABe.

Example 3.1
The main examples of monoidal categories we consider are:

1. The category of endofunctors, End◦, with functor composition (F ◦G)A = F(GA)
as tensor and the identity functor Id as designated object. This monoidal category is
strict, neaning that α , λ and ρ are identities. Monoids in this monoidal category are
known as monads.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 13

2. The category of endofunctors End?, with Day convolution (F ?G)A =
∫ Z F(AZ)×

GZ as tensor and the identity functor Id as designated object. Monoids in this monoidal
category are known as applicative functors. We use this alternative presentation to aid
readability in the code samples, it is isomorphic to the more traditional presentation∫ X ,Y FX×GY ×A(X×Y) in our setting.

3. The category of strong profunctors, SPro, with profunctor composition (P⊗Q)(A,B)=∫ Z P(A,Z)×Q(Z,B) as tensor and the Hom profunctor as designated object. Monoids
in this monoidal category are known as arrows.

Category of Monoids For a monoidal category (D ,⊗, I), we have the category of monoids
Mon(D) which consists of all monoids (M,e,m) in that monoidal category and monoid
homomorphisms between them.

4 Handlers for Free Monoids

In order to include other classes of effects, this section derives a notion of handlers for free
monoids. We begin by recalling the definition of the free monoid on an object:

Definition 4.1 (Free Monoid)
A free monoid on an object Σ in a category D consists of an object (Σ∗,ε,µ) in Mon(D)

together with a morphism ins : Σ→ Σ∗ in D such that for any (M,e,m) in Mon(D) and
morphism f : Σ→M in D , there exists a unique morphism free f : (Σ∗,ε,µ)→ (M,e,m)

in Mon(D) with free f ◦ ins = f .

The condition represented in a diagram is:

Σ Σ∗

M

ins

f
free f

The diagrams corresponding to the monoid homomorphism condition, a morphism in
Mon(D), are:

I Σ∗ Σ∗⊗Σ∗ M⊗M

M Σ∗ M

ε

e free f

free f⊗free f

µ m

free f

More categorically, free monoids arise as the left adjoint to the forgetful functor from
Mon(D) to D .

4.1 Monoidal Handlers

Monoidal Basis We can interpret the carrier Σ∗ of a free monoid as the syntax of compu-
tations. Instead of using val and op from Section 3.2, we can construct programs in this
monoidal syntax from the constructors ε , µ and ins provided by the free monoid.

Example 4.1

ZU064-05-FPR jfp2egui 23 March 2020 16:13

14 R. P. Pieters, E. Rivas and T. Schrijvers

In the following example, we set the category D as End◦(C), the monoidal category of
monads on C . From the general monoidal syntax (left) follows the specialized syntax
(right) for this setting:

ε : I→ Σ
∗

µ : Σ
∗⊗Σ

∗→ Σ
∗

ins : Σ→ Σ
∗

εA : A→ Σ
∗A

µA : Σ
∗(Σ∗A)→ Σ

∗A

insA : ΣA→ Σ
∗A

The constructor εA is the same as valA: it embeds a value into a computation. Con-
structor insA embeds an operation into a computation. To embed an operation returning
another computation, of type Σ(Σ∗A), we use naturality of insA to obtain insΣ∗A : Σ(Σ∗A)→
Σ∗(Σ∗A). Lastly, µA converts a computation returning a computation into a flat computa-
tion.

Consider the taskExample computation again:

taskExample = do

a1 <- fetch "A1"

a2 <- fetch "A2"

return (a1 + a2)

which was constructed using val/op as:

example =

opInt (fetch ("A1",(λ(a1: Int).

opInt (fetch ("A2",(λ(a2: Int).

valInt (a1 + a2)

)))

)))

The same program can be constructed with the monoidal constructors, namely ε/µ/ins:

µInt (insΣ∗Int (fetch ("A1",(λ(a1: Int).

µInt (insΣ∗Int (fetch ("A2",(λ(a2: Int).

εInt (a1 + a2)

))))

))))

Monoidal Handler Monoidal programs are interpreted by monoidal handlers. Monoidal
handlers are defined by a clause for the constructors ε and µ , and one other clause for each
operation; each clause evaluates programs to a monoid (M,e,m). The unit e : I→M and
multiplication m : M⊗M → M of this monoid are defined by the clauses for the ε and
µ constructor respectively. This definition is expected to satisfy the monoid laws, but the
notation does not enforce this. All operation clauses are combined to define the morphism
f : Σ→ M, which interprets the constructor ins. This makes free f , the unique monoid
morphism induced by a morphism f : Σ→M, the handler construct for monoidal programs.

In the example, monads on C , the clauses to define are:

mh = mhandler

| ε (a: A) -> . . .: MA (eA)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 15

| µ (mma: M(MA)) -> . . .: MA (mA)

| opi (pi: Pi,k: Ni -> A) -> . . .: MA (fA)

Notably, the handling construct is named mhandler, as opposed to handler, to signify a
monoidal handler.

The evaluation rules are determined by the conditions in the free monoid definition.
The ε rule is similar to the val rule.

mhandle (x: A) with mh = eA x

The µ rule forwards the handling to both Σ∗ structures, and then combines the result using
multiplication m from the monoid (M,e,m).

mhandle (s: Σ∗(Σ∗A)) with mh

= mA (mhandle (Σ∗(mhandle _ with mh) s) with mh)

The ins rule interprets an operation opi with a function f .

mhandle (opi (p: Pi) (k: Ni -> A)) with mh

= fA (p, k)

Example 4.2
As an example, we give the monoidal implementation for fetchConsole, which interprets
fetch operations to user queries on the console. The monoid for IO is assumed to be
defined in the internal functions returnIO and joinIO.

mFetchConsole : A ! {fetch, M} => IO A

mFetchConsole = mhandler

| ε (a: A) -> returnIO a

| µ (mma: IO(IO A)) -> joinIO mma

| fetch (cell: String, k: Int -> A) -> do

print("cell: " ++ cell)

x <- readLn

return (k x)

4.2 Inductive Handlers

Initial Algebra Basis The free monoid can be represented constructively as the initial
algebra of the I+Σ⊗− functor. Concretely, this gives us an alternative set of constructors:
ε : I→ Σ and ι : Σ⊗Σ∗→ Σ∗. These morphisms are the two elements of the initial algebra
[ε, ι] : I +Σ⊗Σ∗→ Σ∗.

Using this alternative syntax, the example computation is constructed as:

example =

ιInt (fetch ("A1",(λ(a1: Int).

ιInt (fetch ("A2",(λ(a2: Int).

εInt (a1 + a2)

)))

)))

ZU064-05-FPR jfp2egui 23 March 2020 16:13

16 R. P. Pieters, E. Rivas and T. Schrijvers

Initial Algebra Handler This alternative basis derives its handler by using the unique
algebra homomorphism from the initial algebra. This unique morphism is denoted L[a,b]M :
Σ∗→ X for a morphism a : I→ X and b : Σ⊗X → X . It is the unique morphism for which
the following diagrams commute:

I Σ∗ Σ⊗Σ∗ Σ⊗X

X Σ∗ X

ε

a L[a,b]M

Σ⊗L[a,b]M

ι b
L[a,b]M

This results in a new handling construct ihandler. For the monads on C example, it
requires the following clauses:

ih = ihandler

| ε (a: A) -> . . .: XA (eA)

| opi (p: Pi,k: Ni -> XA) -> . . .: XA (gA)

which has no laws attached.
The evaluation rules follow from the algebra homomorphism conditions.

The ε rule is unchanged:

ihandle (x: A) with ih = eA x

The ι rule differs slightly from the ins rule, it handles operations returning a computation
Σ∗A instead of a value A. Thus it forwards the handling before combining the results.

ihandle (opi (p: Pi,k: Ni -> Σ∗A)) with ih

= gA (p, λn. ihandle (k n) with ih)

Example 4.3
The inductive handler for the fetchConsole example is implemented as:

iFetchConsole : A ! {fetch, M} => IO A

iFetchConsole = ihandler

| ε (a: A) -> returnIO a

| fetch (cell: String,k: Int -> IO A) -> do

print("cell: " ++ cell)

x <- readLn

k x

4.3 Expressiveness of Monoidal and Inductive Handlers

Both the free monoid and initial algebra bases have an equal expressiveness. Either can
present the interface of the other. There are also two properties to ensure the consistency
between each basis: the round-trip and coherency properties. The former requires that a
round-trip conversion, namely converting to one basis and then back to the other basis,
is the identity. The latter requires that the handlers behave in a consistent manner in both
bases.

Initial Algebra Basis from Free Monoid Basis The following definitions represent the
constructor/handler from the initial algebra basis:

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 17

Table 2: Overview of Handlers
Free Algebra Free Monoid (free) Free Monoid (L−M)

syntax/
computation

valA : A→ Σ∗A
opA : Σ(Σ∗A)→ Σ∗A

ε : I→ Σ∗

ins : Σ→ Σ∗

µ : Σ∗⊗Σ∗→ Σ∗

ε : I→ Σ∗

ι : Σ⊗Σ∗→ Σ∗

handler
Σ-algebra:
〈B,c = [c0, . . . ,cn] : ΣB→ B〉

v : A→ B

monoid: (M,e,m)
f = [f0, . . . , fn] : Σ→M

I +Σ⊗−-algebra:
〈X , [e,g] : I +Σ⊗X → X〉
g = d[bg0c, . . . ,bgnc]e

handler
(clauses)

| val A -> B (v)
| opi ΣiB -> B (ci)

| ε I -> M (e)
| opi Σi -> M (fi)
| µ M⊗M -> M (m)

| ε I -> X (e)
| opi Σi⊗X -> X (gi)

handling a
computation handle : Σ∗A→ B free f : Σ∗→M L[e,g]M : Σ∗→ X

handling
rules

handle◦valA = v
handle◦opA = c◦Σhandle

free f ◦ ε = e
free f ◦ ins = f
free f ◦µ =
m◦ (free f ⊗ free f)

L[e,g]M◦ ε = e
L[e,g]M◦ ι = g◦ (Σ⊗ L[e,g]M)

ι = Σ⊗Σ
∗ ins⊗Σ∗−−−−→ Σ

∗⊗Σ
∗ µ−→ Σ

∗

evalX e = XX ρ−1

−−→ XX ⊗ I XX⊗e−−−→ XX ⊗X
evX−−→ X

L[e,g]M = Σ
∗ freebgc−−−−→ XX evalX e−−−−→ X

where the use of freebgc is justified, since it interprets to the endomorphism monoid
(XX , ė : I→ XX , ṁ : XX ⊗XX → XX).

Free Monoid Basis from Initial Algebra Basis The following definitions represent the
constructors/handler from the free monoid basis:

ins = Σ
ρ
−1
Σ−−→ Σ⊗ I Σ⊗ε−−→ Σ⊗Σ

∗ ι−→ Σ
∗

µ = dL[bI⊗Σ
∗ λΣ∗−−→ Σ

∗c,

b(Σ⊗Σ
∗Σ∗)⊗Σ

∗ α−1
−−→ Σ⊗ (Σ∗Σ

∗ ⊗Σ
∗)

Σ⊗evΣ∗−−−−→ Σ⊗Σ
∗ ι−→ Σ

∗c]Me

free f = L[I e−→M,Σ⊗M
(f⊗M)−−−−→M⊗M m−→M]M

where (M,e,m) is a monoid.

Properties The round-trip properties are obtained by deriving the definition of the con-
structors, from the other basis, as a property. The proofs of these properties are in Appendix
B.3, B.4, C.3, C.4 and C.5.

The coherency properties are obtained by deriving the evaluation rules of the handler,
from the other basis, as a property. The proofs of these properties are in Appendix B.5 and
C.6.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

18 R. P. Pieters, E. Rivas and T. Schrijvers

4.4 Expressiveness of Monoidal and Free Algebra Handlers

The monoidal handler for monads is slightly different from the original handlers based on
free algebras. At first sight it seems that the carriers of the two handlers only coincide when
the carrier B of the free algebra handler is of the form MA where M is the monad carrier
of the monoidal handler and the free algebra handler is natural in A. This might suggest
that the monoidal handler is less expressive than its free algebra counterpart, which is not
restricted to this particular form of carrier. However, both handlers are equally expressive.

The continuation monad enables translating the handle interface in terms of ihandle
or mhandle. The continuation monad is defined as XXA

, which is the type (A -> X) ->

X in C . The translation of handle in terms of ihandle is:

handle x with

(handler

| val (a: A) -> . . .: X (v)
| opi (pi: Pi,k: Ni -> X) -> . . .: X (ci)

)

= (ihandle x with

(ihandler

| ε (a: A)

-> λ(f: A -> X). f a

| opi (pi: Pi,k: Ni -> ((A -> X) -> X))

-> λ(f:A -> X). ci (pi, λ(n: Ni). k n f)

)) v

where the ihandler interprets to the (A -> X) -> X type and is then evaluated with v.
The consistency property of this translation is proven in Appendix D.1 and D.2.

4.5 Summary

An overview of the free algebra and free monoid approach can be seen in Table 2. Since free
monoid handlers are equivalent to free algebra handlers, when the former is instantiated for
monads, we consider it a natural extension of the latter approach. By instantiating the free
monoid handlers for other effects such as applicative functors or arrows it is possible to
define handlers for non-monadic effects, which we call non-monadic handlers.

5 Non-Monadic Handlers

This section explores the monoidal handlers for applicatives and arrows. We instantiate the
monoidal categories accordingly and specialize the definitions of the derived handlers.

5.1 Applicative Handlers

Applicative computations are very restricted in what they can express. They can only
express computations which correspond to a list of operations to execute, returning a value
combining the results of these operations.

Instantiating the syntax morphisms for End?(C) with Day convolution ? gives:

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 19

εA : A→ Σ
∗A

ιA : (Σ?Σ
∗)(A)→ Σ

∗A

= (
∫ Z

Σ(Z→ A)×Σ
∗Z)→ Σ

∗A

or an alternative formulation for ι is ιZ,A : Σ(Z→ A)×Σ∗Z→ Σ∗A.
This results in the following inductive handler interface:

ihAp = ihandler

| ε (a: A) -> . . .: FA
| opi (p: Pi, k: Ni -> Z -> A, l: FZ) -> . . .: FA

and the following monoidal handler interface:

mhAp = mhandler

| ε (a: A) -> . . .: FA
| µ (mza: F(Z -> A), mz: FZ) -> . . .: FA
| opi (pi: Pi, k: Ni -> A) -> . . .: FA

To show how this corresponds to the intuitive explanation, we will transform the follow-
ing applicative program into the primitive syntax.

taskExample = do

a1 <- fetch "A1"

a2 <- fetch "A2"

return (a1 + a2)

We introduce the fetch "A1" operation with ιZ,A. Specifically for this operation, ιZ,A

has the form String× (Z→ A)Int×Σ∗Z→ Σ∗A. The first parameter, of type String, is
the cell identifier "A1". The second parameter, of type Int -> Z -> A, is a function
describing how to combine the current cell value with the result from the rest of the
computation. The third parameter Σ∗Z is the rest of the computation. In this case, we take
Z to be Int, since that is the result of the remaining fetch "A2" operation, and A to be
Int, since that is the final result type of the computation. This continuation is a1 + z,
where a1 is the result of fetch "A1" and z is the result of the remaining computation.

The fetch "A2" operation follows a similar pattern. But now, Z is the type () since
the rest of the computation does not contain any more operations. The continuation for this
operation is a2, since it is passed to the continuation for fetch "A1".

This results in the following desugaring of the applicative computation:

ιint,int (fetch ("a1",λ(a1:int).λ(z:int).a1 + z)) (

ι(),int (fetch ("a2",λ(a2:int).λ(z:()).a2))) (

ε() ()

)

)

Example 5.1
In the applicative syntax representation, all parameters and operations are immediately
accessible, meaning that they are not inside a lambda-expression. Due to this we can
express handlers which analyze computations, for example to return all dependencies of a
task.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

20 R. P. Pieters, E. Rivas and T. Schrijvers

The inductive handler analyzes dependencies by starting from an empty list [] and
adding the cell name of each fetch operation. Note that we interpret to the constant
applicative functor ∆A, where A must be a monoid, and use lifted operations, such as :̇:
and +̇+, to operate on values inside this functor.

iAnalyzeAp : A ! {fetch, Ap} => ∆[String] A

iAnalyzeAp = ihandler

| ε (a: A) -> ∆[String] []

| fetch (cell: String, k: Int -> Z -> A, l: ∆[String] Z) -> cell :̇: l

The monoidal handler interprets each fetch operation to a list with the cell name as its
only element, then the µ operation appends all of these lists together.

mAnalyzeAp : A ! {fetch, Ap} => ∆[String] A

mAnalyzeAp = mhandler

| ε (a: A) -> ∆[String] []

| µ (mza: ∆[String] Z -> A, mz: ∆[String] Z) -> mza +̇+ mz

| fetch (cell: String, k: Int -> A) -> ∆[String] [cell]

Handling taskExample with iAnalyzeAp or mAnalyzeAp gives the cells on which it
depends:

λ> handle taskExample with iAnalyzeAp

["A1", "A2"]

λ> handle taskExample with mAnalyzeAp

["A1", "A2"]

Since applicative computations are a subset of monadic computations, we can adapt the
handler fetchConsole to its applicative version. The inductive version is given below.

iFetchConsoleAp : A ! {fetch, Ap} => IO A

iFetchConsoleAp = ihandler

| ε (a: A) -> return a

| fetch (cell: String, k: Int -> Z -> A, r: IO Z) -> do

print ("cell: " ++ cell)

x <- readLn

fmap (k x) r

The monoidal version is given below.

mFetchConsoleAp : A ! {fetch, Ap} => IO A

mFetchConsoleAp = mhandler

| ε (a: A) -> return a

| µ (mza: IO (Z -> A), mz: IO Z) -> do

za <- mza

z <- mz

return (za z)

| fetch (cell: String, k: Int -> A) -> do

print ("cell: " ++ cell)

x <- readLn

return (k x)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 21

5.2 Arrow Handlers

Arrow computations are more restricted compared to monads, but more permissive than
applicatives. They again express a static list of operations to execute, but the parameters
which are passed to these operations can depend on result values from previous opera-
tions. To work with arrows, we require to change our view on operations from functors to
profunctors.

Operations as Profunctors Signature functors, defined as ΣiB=Pi×BNi , can be extended
to signature profunctors as~Σi(A,B) = (Pi×BNi)A. For example, the profunctor version of
fetch is~Σfetch(A,B) = (String×BInt)A.

Instantiating the syntax morphisms for SPro(C) with Profunctor composition ⊗ gives:

εA,B : BA→~Σ∗(A,B)

ιA,B : (~Σ⊗~Σ∗)(A,B)→~Σ∗(A,B)

= (
∫ Z

~Σ(A,Z)×~Σ∗(Z,B))→~Σ∗(A,B)

where the notation ~Σ denotes a profunctor signature. An alternative formulation of ι is
ιZ,A,B :~Σ(A,Z)×~Σ∗(Z,B)→~Σ∗(A,B). The output Z of the embedded operation~Σ(A,Z) is
linked to the input of the rest of the computation~Σ∗(Z,B).

An example arrow program is given below. The program consists of two fetch opera-
tions, but the parameter of the second operation depends on the result of the first.

taskDyn = do

a1 <- fetch "A1"

fetch ("B" ++ show a1)

We can desugar this program with the more primitive arrow syntax. We introduce the
fetch "A1" operation with ιZ,A,B. For this operation, it has the form (String×ZInt)A×
~Σ∗(Z,B)→~Σ∗(A,B). The first parameter, of type A -> (String, Int -> Z), is the cell
name and the continuation in a function with input A. The second parameter is the rest of
the computation. The parameter A is the current input from the previous operations, so for
the first operation this is (). The output Z is Int since we need to use the current result
value of the output operation later in the computation.

For the second fetch operation, the input A from the previous operations is Int. This
value can be used in the cell name passed as operation parameter. The output Z is again
Int, since we only return the value from the last fetch operation.

This results in the following desugaring:

ιInt,(),Int (fetch (λ(_:()).("A1",λ(a1:Int).a1))) (

ιInt,Int,Int (fetch (λ(i:Int).("B" ++ show i,λ(ax:Int).ax))) (

εInt,Int (λ(v:Int).v)

)

)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

22 R. P. Pieters, E. Rivas and T. Schrijvers

Static and Dynamic Parameters The earlier profunctor operation considered the whole
cell name as a dynamic parameter, meaning that all information was behind the input
parameter A. This is too restrictive for our use case. Instead, we split the information passed
to the operation into a static and dynamic parameter. So, a signature functor ΣiB = Pi×BNi

can be extended to~Σi(A,B) = Si× (Di×BNi)A, where Si, the static parameter, and Di, the
dynamic parameter, can be combined to create Pi.

With this change in operation, the desugaring for taskDyn is slightly different. The
static parameter Si is the cell column. The dynamic parameter Di is the cell row, since the
row is dependent on previous results in taskDyn. The static operation parameter moves to
the outside of the lambda taking the A input parameter.

ιInt,(),Int (fetch ("A", λ(_:()).("1",λ(a1:Int).a1))) (

ιInt,Int,Int (fetch ("B", λ(i:Int).(show i,λ(ax:Int).ax))) (

εInt,Int (λ(v:Int).v)

)

)

Considering the static and dynamic parameters, we get the following inductive handler
interface as a result:

ihAp = ihandler

| ε (f: A -> B) -> . . .: P(A,B)
| opi (p: Si, k: A -> (Di, Ni -> Z), l: P(Z,B)) -> . . .: P(A,B)

and the following monoidal handler interface:

mhAp = mhandler

| ε (a: A -> B) -> . . .: P(A,B)
| µ (maz: P(A,Z), mzb: P(Z,B)) -> . . .: P(A,B)
| opi (pi: Si, f: A -> (Di, Ni -> B)) -> . . .: P(A,B)

Example 5.2
In the arrow syntax representation, the operations are accessible but the parameters to these
operations are not. This is because these can be dependent on previous operation results.
However, due to the distinction between static and dynamic parameters, we regain some
applicative capabilities and can access the static part of the operation parameters. We use
this to extract the column information from arrow computations where this is the static
parameter.

As with the applicative handler, the inductive version builds the list by concatenating
elements while the monoidal version creates one-element lists which are combined later.

iAnalyzeAr : A -> B ! {fetch, Ar} => ~∆[String] (A,B)

iAnalyzeAr = ihandler

| ε (f: A -> B) -> ~∆[String] []

| fetch (col: String, k: A -> (String, Int -> Z), l: ~∆[String] (Z,B))

-> col :̇: l

mAnalyzeAr : A -> B ! {fetch, Ar} => ~∆[String] (A,B)

mAnalyzeAr = mhandler

| ε (f: A -> B) -> ~∆[String] []

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 23

| µ (maz: ~∆[String] (A,Z) -> A,mzb: ~∆[String] (Z,B)) -> maz +̇+ mzb

| fetch (col: String, f: A -> (String, Int -> B)) -> ~∆[String] col

Handling taskDyn with iAnalyzeAr or mAnalyzeAr gives ["A", "B"], which are
the columns on which taskDyn depends.

Arrow computations are also a subset of monadic computations, which means that we
can adapt the handler fetchConsole to its arrow version. The arrow version makes use
of the KleisliM(A,B) arrow, where M is a monad. The constructor KleisliM takes a
function A -> M B and converts it to KleisliM(A,B), while the function runKleisli

takes a KleisliM(A,B) value and converts it to A -> M B.

iFetchConsoleAr : A -> B ! {fetch, Ar} => KleisliIO(A,B)

iFetchConsoleAr = ihandler

| ε (f: A -> B) -> KleisliIO (λ(a: A). return (f a))

| fetch (col: String,f: A -> (String, Int -> Z),k: KleisliIO(Z,B))

-> KleisliIO (λ(a: A). do

let (row: String, g: Int -> Z) = f a

print ("cell: " ++ col ++ row)

x <- readLn

runKleisli k (g x)

)

The monoidal version is given below.

mFetchConsoleAr : A -> B ! {fetch, Ar} => KleisliIO(A,B)

mFetchConsoleAr = mhandler

| ε (f: A -> B) -> KleisliIO (λ(a: A). return (f a))

| µ (maz: KleisliIO(A,Z), mzb: KleisliIO(Z,B)) ->

KleisliIO (λ(a: A). do

z <- maz a

mzb z

)

| fetch (col: String, f: A -> (String, Int -> B)) ->

KleisliIO (λ(a: A). do

let (row: String, g: Int -> Z) = f a

print ("cell: " ++ col ++ row)

x <- readLn

return (g x)

)

6 Reusing Handlers and Programs

In section 5 we have seen handlers for different computation classes, interpreting programs
to IO. There is no essential difference in how these handlers operate. For these cases a
reuse of handler definitions across the computation classes can be useful. Dually, programs
from different computation classes may express the same computation. For example, an
applicative computation can be identical to a monadic computation that does not use the

ZU064-05-FPR jfp2egui 23 March 2020 16:13

24 R. P. Pieters, E. Rivas and T. Schrijvers

full monadic expressiveness. Again raising the concern of reuse, but now for computation
definitions.

This section accomplishes both forms of reuse by means of an adjunction whose right
adjoint is a lax monoidal functor. As we saw in Section 3, our model of computations is
based on monoids in monoidal categories. In order to reuse monoids, we need to have a
connection between the monoidal categories. The categorical ingredients for establishing
such connections are twofold: adjunctions and lax monoidal functors. An adjunction is a
pair of functors together with a weakened form of equivalence between the two categories.
These functors are used to translate the underlying object of a monoid from one category
to another, while the lax monoidal structure of the functor guarantees that the monoidal
structure on top of the object is preserved. We present adjunctions and lax monoidal
functors between the monoidal categories End◦, SPro and End?.

We will see that not every form of reuse is possible. We can only reuse programs from
less expressive classes in more expressive classes, for example applicative → arrow →
monad. The handler reuse opportunities are dual, that is monad→ arrow→ applicative.

6.1 Monoidal Functors & Adjunctions

Before explaining how to reuse handlers and programs, we introduce the two key concepts.

Adjunction The pair of functors L : A →B and R : B→A map between two monoidal
categories A and B. These functors are related by the adjunction L a R:

B >

R

((
A

L

gg

This adjunction is characterized by a natural isomorphism on A and B:

T−U : B(LA,B)∼= A (A,RB) : V−W

(Co-)Lax Monoidal Functors If we have two monoidal categories and a functor between
them, we can consider those structures that make the functor interact coherently with the
monoidal structures as in the following definition.

Definition 6.1 (Lax Monoidal Functor)
Let (A ,⊗, I) and (B,⊕,J) be two monoidal categories. A lax monoidal functor between
them is

a) a functor F : A →B

b) a morphism φ 0 : J→ FI
c) a natural transformation φA,B : FA⊕FB→ F(A⊗B)

satisfying coherence conditions with respect to unitality and associativity. There is a dual
notion of colax monoidal functor in which the directions of φ 0 and φA,B are inverted.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 25

A key property of lax monoidal functors is their mapping of monoids (M,e,m) in A to
monoids (FM,e′,m′) in B, where e′ and m′ are defined as:

e′ = J
φo

−→ FI F e−→ FM

m′ = FM⊕FM
φM,M−−−→ F(M⊗M)

F m−−→ FM

Monoidal Adjunction When there is an adjunction L a R, there is a bijection between the
lax monoidal structures on R and colax monoidal structures on L, i.e. if R is lax monoidal,
then L has a colax monoidal structure, and dually, if L is colax monoidal, then R has a lax
monoidal functor. We refer to such adjunctions as monoidal adjunctions here.

6.2 Transformation-based Approach

This section presents our approach, based on transforming the programs/handlers in one
category to programs/handlers in the other category.

Let (A ,⊗, I) and (B,⊕,J) be two monoidal categories with an adjunction L a R such
that R : B −→A is lax monoidal.

Notation To prevent confusing the category of signatures and of programs, we use the
following notational convention.

Signatures that originate in category A are denoted Ξ, and free monoids are super-
scripted with ⊗: Ξ⊗, rather than Ξ∗. Signatures from category B are denoted Σ and free
monoids have a superscript ⊕: Σ⊕.

Also, B is the category with less expressive handlers, but more expressive programs.
The opposite is true for A : it has more expressive handlers, but less expressive programs.

Algebra Conversion We now show how to convert a handler algebra [i : J → X ,a : Σ⊕
X → X] in B to a handler algebra [i′ : I→ RX ,a′ : RΣ⊗RX → RX] in A . We precompose
the R-mapped algebra morphisms with φ 0 and φΣ,X respectively to obtain the converted
algebra.

i′ = I
φ0

−→ RJ Ri−→ RX

a′ = RΣ⊗RX
φΣ,X−−→ R(Σ⊕X)

Ra−→ RX

In other words, we can obtain an A -handler h′ : (RΣ)⊗→ RX = L[i′,a′]M from a B-handler
h : Σ⊕→ X = L[i,a]M.

For example, using this algebra conversion we can convert the handler iFetchConsoleAr
from Example 5.2 to a handler equivalent to iFetchConsoleAp from Example 5.1, allow-
ing the handling of applicative computations with iFetchConsoleAr.

Program Conversion The dual conversion, using the same elements, takes a program
written in terms of the free monoid Ξ⊗ on the signature Ξ in A to a program R

(
(LΞ)⊕

)
:

TinsLΞU : Ξ→ R((LΞ)⊕)

convert = Ξ
⊗ freeTinsLΞU−−−−−−→ R((LΞ)⊕)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

26 R. P. Pieters, E. Rivas and T. Schrijvers

Using free requires that R((LΞ)⊗) induces a monoid, which it does since R is a lax monoidal
functor.

For example, using this program conversion we can convert the program taskExample

represented with applicative syntax from Section 5.1 to a representation with the arrow
syntax, allowing the use of arrow handlers on taskExample.

Overview Now, we assume that the two signatures Ξ in A and Σ in B are related by a
morphism f : LΞ→ Σ, which through the adjunction has transpose T f U = g : Ξ→ RΣ.
There are two conversions that enable alternative paths for handling a program Ξ⊗ to a
result RX ,

Ξ⊗
convert //

hoistg

��

R((LΞ)⊕)
R(hoist f)// R(Σ⊕)

Rh
��

(RΣ)⊗
h′

// RX

where hoist is defined on a morphism x : A→ B as

hoist x : A∗→ B∗ = L[ε, ι ◦ (x⊗B∗)]M

Appendix E proves that both paths of this diagram are equivalent to the fused morphism
L[i′,a′ ◦ (g⊗ RX)]M. This means that converting a handler and handling a program, or
converting this program and then handling it with the handler, give the same result. The
fused morphism is a likely optimization to the previous two, more intuitive, approaches.

6.3 Instances

This section instantiates the approach for three conversions: applicative↔ arrow, arrow↔
monad and applicative↔ monad.

Applicative ↔ Arrow For this conversion, we are in the setting of the adjunction be-
tween the categories SPro and End. The left adjoint functor -! : End→ SPro is defined as
F!(A,B) = F(BA), which creates a (strong) profunctor by putting a contravariant argument
inside the transformed functor. The right adjoint functor -∗ : SPro→ End is defined as
P∗(A) = P((),A), which transforms a profunctor into a functor by putting the unit value
() in the contravariant position1.

SPro >

-∗
((
End

-!

hh

The -∗ functor has lax monoidal structure, characterized by the following morphisms:

1 In the Haskell module Control.Arrow it is called ArrowMonad, https://hackage.haskell.
org/package/base-4.10.0.0/docs/src/Control.Arrow.html#ArrowMonad.

https://hackage.haskell.org/package/base-4.10.0.0/docs/src/Control.Arrow.html#ArrowMonad
https://hackage.haskell.org/package/base-4.10.0.0/docs/src/Control.Arrow.html#ArrowMonad

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 27

φP,Q : P∗?Q∗→ (P⊗Q)∗, φ
0 : Id→ Hom∗.

This results in the Cayley (monoidal) adjunction introduced by Pastro & Street (2007).

SPro >

-∗
))
End?

-!

ii

We can apply the handler and program conversion to this adjunction. Given a handler
described by morphisms of type Hom→ P and Σ⊗P→ P, we obtain the converted handler
in End? of the form Id → P∗ and Σ∗?P∗→ P∗. For a signature Ξ in End?, the program
conversion is implemented by the morphism convert?

Ξ
: Ξ?→

(
Ξ
⊗
!

)∗.
This monoidal adjunction is the basis to justify that an applicative functor is a static

arrow (Lindley et al., 2011): using -∗ and -! we can write an idempotent comonad on
SPro. Monoids in SPro which carry a coalgebra structure for this comonad are applicative
functors. This last affirmation is captured at the code level by an arrow a x y which
additionally satisfies the equation a x y = a () (x -> y) (Rivas, 2018).

Arrow↔Monad For this conversion, the adjunction is again between the categories SPro
and End. The left adjoint is the -∗ functor, which was present as right adjoint in the previous
paragraph. The right adjoint functor -∗ : End◦ → SPro is defined as F∗(A,B) = (FB)A,
which creates a profunctor by putting a contravariant argument on the transformed functor
as an exponent.

End >

-∗
))
SPro

-∗
hh

The -∗ functor has lax monoidal structure, characterized by the following morphisms:

ψF,G : F∗⊗G∗→ (F ◦G)∗, ψ
0 : Hom→ Id∗.

When seen as a monoidal functor, -∗ was called KLEISLI (Rivas & Jaskelioff, 2017). We
instead use the name Kleisli to refer to the monoidal adjunction arising due this functor.

End◦ >

-∗
))
SPro

-∗
ii

This adjunction results in a handler algebra conversion: given Id → X and Σ ◦X → X ,
it forms Hom→ X∗ and Σ∗⊗X∗→ X∗. It also results in a program conversion morphism
convert⊗

Ξ
: Ξ⊗→ ((Ξ∗)◦)∗ for a signature signature Ξ in SPro.

As in the previous case, this monoidal adjunction is the basis to justify that a monad is
is a higher-order arrow (Lindley et al., 2011): using -∗ and -∗ we can write an idempotent
monad on SPro. Monoids in SPro which carry an algebra structure for this monad are

ZU064-05-FPR jfp2egui 23 March 2020 16:13

28 R. P. Pieters, E. Rivas and T. Schrijvers

monads. This last affirmation is captured at the code level by an arrow a x y which
additionally satisfies the equation a x y = x -> a () y (Rivas, 2018).

Applicative↔Monad The two previous adjunctions can be composed:

End >

-∗
))
SPro >

-!

((

-∗

hh End

-∗
hh

It is a classical result that a composition of two adjunctions gives a new adjunction:

End >

-∗ ◦ -∗
((
End

-∗ ◦ -!

hh

In this particular case, we can calculate the action of these composed functors on objects,

(-∗ ◦ -!)(F)(Z) = (F!)
∗(Z) = F!((),Z) = F(Z())∼= F(Z), (1)

(-∗ ◦ -∗)(F)(Z) = (F∗)
∗(Z) = F∗((),Z) = F(Z)() ∼= F(Z), (2)

which means that the adjunction is just the trivial identity adjunction.
However, at the level of monoidality, the situation is more interesting. The lower mor-

phism has a lax monoidal structure inherited from (ψF,G,ψ
0) and (φP,Q,φ

0) as χ = ψF,G
∗◦

φP,Q and χ0 =
(
ψ0
)∗◦ φ 0. This monoidal structure on identity is not trivial, and it was

called DAY previously (Rivas & Jaskelioff, 2017).
Given i : Id→ X and a : Σ◦X → X , we have the algebra conversion

i′ = Id
φ0

−→ Hom∗
(ψ0)

∗

−−−→ (Id∗)
∗ (i∗)∗−−→ (X∗)

∗,

a′ = (Σ∗)
∗? (X∗)

∗ φP,Q−−→ (Σ∗⊗X∗)
∗ ψF,G

∗
−−−→ ((Σ◦X)∗)

∗ (a∗)∗−−−→ (X∗)
∗,

and given a signature Ξ in End?, we have the program conversion

convert = Ξ
convert?

Ξ−−−−→ ((Ξ!)
⊗)
∗ (convert⊗

Ξ!
)
∗

−−−−−−→
(((

(Ξ!)
∗)◦)

∗
)∗
.

These two can be simplified using Equations 1 and 2. The handler algebra conversion
transforms a monad action with components of type Id → X and Σ ◦ X → X into an
applicative action with components of type Id→X and Σ?X→X . The program conversion
results in a morphism Ξ?→ Ξ◦.

7 Use of Non-Monadic Handlers in Build Systems

In this section we relate the original build system use case to the approach used in this
paper. First, we relate the approach used in the original use case (Mokhov et al., 2018) and
the framework used in this paper. Second, we discuss possibilities enabled by arrow build
systems.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 29

Code This section contains Haskell code, which is formatted in colored teletype text.

7.1 Task in Original Build System Model

A build system consists of various Tasks. Each task is a representation of how to build a
certain artifact. Artifacts are uniquely determined by their key of type k and building them
results in a value of type v. For a traditional build system based on a file system, k might
be file paths and v might be file contents. In the case of spreadsheet, k is the cell name and
v is the cell content.

The Task type itself is represented as a function:

newtype Task c k v = Task {

run :: forall f. c f => (k -> f v) -> f v

}

This function yields a result of type v wrapped in type constructor f since building
the artifact is likely to have side effects. The type constructor f is kept abstract to allow
for interpreting the same task with different kinds of side-effects. Similarly, the constraint
imposed on f is a parameter that can be instantiated in multiple ways, such as with Monad

or Applicative. The task may depend on other artifacts. To access these, it receives
a fetch operation of type k -> f v. This fetch operation either simply retrieves the
dependency’s value, if it is on hand, or first builds it, if it is not.

Task Monad A monadic task is represented by a Task Monad. In testTM we first fetch
the cell "C1" and then depending on its value we fetch either cell "A1" or "A2".

testTM :: Task Monad String Integer

testTM = Task $ \fetch -> do

c1 <- fetch "C1"

if c1 == 1

then fetch "A1"

else fetch "A2"

The computation testTM utilizes the yet unspecified effect f from the Task type. The
actual effects will be determined once we decide how to run them, which is done by
giving an interpretation. We give an interpretation by supplying the handler as a parameter.
For example, the handler fetchConsole interprets each fetch operation in a Task as a
request on the console to the user.

fetchConsole :: String -> IO Integer

fetchConsole cell = do

print ("cell: " ++ cell)

readLn

Running run testTM fetchConsole requests cell information twice: first the data in
cell "C1" is requested, which then determines if we have to pass the data in cell "A1" or
"A2".

ZU064-05-FPR jfp2egui 23 March 2020 16:13

30 R. P. Pieters, E. Rivas and T. Schrijvers

Task Applicative An applicative task is represented by a Task Applicative, for exam-
ple testTI.

testTI :: Task Applicative String Integer

testTI = Task $ \fetch -> do

a1 <- fetch "A1"

a2 <- fetch "A2"

return (a1 + a2)

The above example uses the ApplicativeDo extension to sugar applicative computa-
tions in Haskell (Marlow et al., 2016). The desugared version is as follows:

testTI’ :: Task Applicative String Integer

testTI’ = Task $ \fetch ->

(+) <$> fetch "A1" <*> fetch "A2"

For example, we can write the handler fetchStatic which gathers all static informa-
tion, in this case task dependencies, into a list. This utilizes the Applicative instance of
Const to fully determine the handler behaviour.

fetchStatic :: a -> Const [a] b

fetchStatic a = Const [a]

instance (Monoid c) => Applicative (Const c) where

pure a = Const mempty

(Const ma) <*> (Const mb) = Const (ma <> mb)

Running getConst (run testTI fetchStatic) evaluates to ["A1", "A2"],
which are the dependencies of the testTI task.

7.2 Relation to Monoidal Effects And Handlers

This idea of different computation classes with their own interpretation interface is of
course exactly the idea of the monoidal effects and handlers. In fact, this relation becomes
much more apparent when we instantiate the constraint c with Monad. Then, Task becomes
a specialization of the Van Laarhoven Free Monad (O’Connor, 2014), which is defined as:

newtype VLFree ops v = VLFree {

unVLFree :: forall f. Monad f => ops f -> f v

}

where ops is instantiated with data Fetch a b x = Fetch (b -> x) a.
The Van Laarhoven representation is equivalent to the traditional free monad representa-

tion (Jaskelioff & O’Connor, 2015), used in the rest of this paper. In Haskell this traditional
representation is defined as:

data Free ops v = Ret v | Con (ops (Free ops v))

This equivalent representation opens a different perspective on the Task type used to
model build systems. A Task is a free computation describing how to calculate the values
of a cell, which we presented in Section 2 using the fetch operation. In the next two
paragraphs we cover the Monad and Applicative instantiations and show how the Haskell
concepts instantiate the monoidal handlers and effects framework.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 31

Monad Task A monadic task is represented by a value of type Task Monad k v, for
example testTM. Its interpretation is given by a handler, which for a monoidal handler
consists of three parts: f , ε and µ . The function fetchConsole corresponds to f , while ε

and µ are the Monad implementations for IO.

Applicative Task For an applicative task, a computation is represented by a value of
type Task Applicative k v, for example testTI. Its interpretation is also given by
a handler, which again consists of f , ε and µ . The function fetchStatic corresponds to
f , while the Applicative implementation for Const gives ε and µ .

7.3 Arrow Tasks

The Task representation nicely fits both applicative and monadic computations and their
handlers, but cannot represent arrow computations and handlers. To accommodate arrow
computations as well, we can adapt the Task type to use a profunctor operation as seen in
Section 5.2. We also introduce the distinction between static and dynamic parameters.

newtype TaskA c si di o = TaskA {

runA :: forall p. c p => (si -> p di o) -> p () o

}

TaskA Arrow Consider for example the following arrow task:

testA :: TaskA Arrow String String Integer

testA = TaskA $ \fetch -> proc () -> do

a1 <- fetch "A" -< "1"

fetch "B" -< show a1

This example uses the arrow notation introduced by Paterson (2001). The desugared
version of this example is:

testA’ :: TaskA Arrow String String Integer

testA’ = TaskA $ \fetch ->

arr (_ -> "1") >>>

fetch "A" >>>

arr (\o -> show o) >>>

fetch "B"

Defining the handler requires a definition for f :

fetchStaticA :: a -> ConstArr [a] b c

fetchStaticA a = ConstArr [a]

This ConstArr type is similar to the Const functor, but lifted to profunctors. It can
implement the Arrow typeclass, for which we show Paterson’s version (Paterson, 2001).
This corresponds to the monoidal handler as follows: the ε is given by the arr function,
while the µ is given by (>>>). The first operation is also called strength, which this
paper does not cover but is handled in more detail by for example Rivas & Jaskelioff
(2017).

ZU064-05-FPR jfp2egui 23 March 2020 16:13

32 R. P. Pieters, E. Rivas and T. Schrijvers

newtype ConstArr c i o = ConstArr { getConstArr :: c }

instance (Monoid c) => Arrow (ConstArr c) where

arr f = ConstArr mempty

(ConstArr a) >>> (ConstArr b) = ConstArr (a <> b)

first (ConstArr c) = ConstArr c

Evaluating getConstArr (runA testA fetchStaticA) gives ["A", "B"], which
are all columns used by testA.

TaskA ArrowChoice The computation testTM was shown earlier with a monadic con-
straint. However, as we saw in Section 2, computations with limited control flow can also
be represented as a weaker computation such as ArrowChoice. The ArrowChoice class
enables us to add conditionals as a control flow construct into computations expressed with
if then else in the arrow sugar syntax.

testAC :: TaskA ArrowChoice String () Integer

testAC = TaskA $ \fetch -> proc () -> do

c1 <- fetch "C1" -< ()

if c1 == 1

then fetch "A1" -< ()

else fetch "A2" -< ()

The desugared version is shown below, using the +++ function from the ArrowChoice

class.

testAC’ :: TaskA ArrowChoice String () Integer

testAC’ = TaskA $ \fetch ->

fetch "C1" >>>

arr (\x -> if x == 1 then Left () else Right ()) >>>

(fetch "A1" +++ fetch "A2") >>>

arr untag

where

untag :: Either a a -> a

untag (Left a) = a

untag (Right a) = a

The adapted computation testAC can be analyzed using the previous fetchStaticA
handler by evaluating getConstArr (runA testAC fetchStaticA), giving all possible
dependencies ["C1", "A1", "A2"]. Using this handler requires an instance implemen-
tation of ArrowChoice for ConstArr.

instance (Monoid c) => ArrowChoice (ConstArr c) where

(ConstArr c1) +++ (ConstArr c2) = ConstArr (c1 <> c2)

7.4 Overview Build Systems

This section gives an overview of the different possible and existing types of build systems
corresponding to each computation class.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 33

Monad Build System A monadic build system is the most straightforward build system. It
starts from a target that needs to be built and executes the task corresponding to that target.
The building of that task can execute the building of other tasks, or request the value of
an input. An improvement, implemented by the Shake (Mitchell, 2012) build system, is to
keep track of targets which have already been built.

Applicative Build System The applicative build system uses dependency analysis to de-
termine an optimal building graph. This is possible because applicative tasks are restricted
in such a way that it is always possible to determine their dependencies. An example of
such build system is Make (Feldman, 1979), where the dependencies for each rule must be
specified upfront. This allows make to construct the dependency graph before any building
step is executed and enables certain optimizations such as omitting unneeded steps.

Arrow Build System An arrow build system is able to express computations where input
to build tasks can depend on output from earlier build tasks. For example, in the tempFile
example below, a user builds the file folder/createTemp which creates a temporary file
with a random name. As the next step, the user builds the created temporary file by referring
to the returned output name tempfileName.

tempFile = do

tempfileName <- fetch "folder/createTemp"

fetch ("folder/" ++ tempfileName)

It is no longer possible to statically determine every dependency, but it is possible to
determine that this build task only executes tasks located in the path folder/, which could
be used to automate the cleanup of the temporary files. This is similar to the partially static
information example such as seen in taskDyn from Section 5.2.

ArrowChoice/Selective Build System A build system allowing conditional expressions
cannot build the exact dependency graph, but it can build a pessimistic dependency graph.
By aggregating all possible dependencies throughout all branching statements, it can con-
struct all dependencies which might possibly be needed. Then, all independent dependen-
cies can be constructed in parallel. This build system increases the overall throughput of
the system since dependencies which are independent do not have to wait for a branch
instruction to be built. Dune (Jane Street, 2018) is an example build system using this idea
to do overapproximation of dependencies.

8 Related Work

Algebraic Effects and Handlers This paper is an exploration in the space of interfaces
which a language with algebraic effects and handlers could provide. The currently de-
veloped languages and libraries in this area (such as by Bauer & Pretnar (2015), Brady
(2013), Kiselyov & Ishii (2015), Leijen (2017), Lindley et al. (2017) and Plotkin & Pretnar
(2009)) present the conventional monadic effects to the user, or only distinguish between
applicative and monadic effects, resulting in an interpretation limited to these effect classes.

The interest in abstractions for effects such as applicative and arrow motivates a broader
handler interface, one which allows interpretations utilizing these, and potentially more,

ZU064-05-FPR jfp2egui 23 March 2020 16:13

34 R. P. Pieters, E. Rivas and T. Schrijvers

alternative abstractions. The motivation given at the start of the paper is a simple use
case, but the overarching motivation is to port the use of these alternative abstractions
to algebraic effects and handlers.

The methodology of derivation could be applied to other structures such as free near-
semirings as explored by Rivas et al. (2015). Future work could explore the space of inter-
faces further to find a presentation which feels intuitive to a wide range of programmers.

Handlers for Idioms and Arrows Lindley (2014) introduces the calculus λ f low which
has handler constructs for monadic, applicative and arrow computations. The calculus has
separate handling constructs for each of the different computation classes. We approach
the same idea as a derivation from a general category theoretic framework. Lindley’s and
our interface slightly differ. The handler interfaces in λ f low originate based on the intuition
behind their behaviour. We give a short summary of the λ f low interfaces below. For the full
details we refer to the original work by Lindley (2014).

The λ f low calculus is based on a call-by-push-value approach, and so there is a distinc-
tion between values and computations. The types of thunks are denoted with curly brackets
{. . .} and the types of computations are denoted with square brackets [. . .]. Thunks are
annotated with a list of effects and flow types, the flow types indicate whether data and/or
control flow is used in the computation. We omit these annotations below, since they are
not necessary for the overview given here.

The monad handler presents the traditional interface as was discussed before in the
background section (Section 3).

| return (x: A) -> . . .: C

| opi (p: Ai, k: {Bi -> C}) -> . . .: C

The arrow handlers are applicable to computations with an input, thus an arrow handler
is applied using handle (λz. comp) with h. This results in the return clause taking a
computation rather than a value. The continuation k is a thunk of type {F(X × Bi)}, the
functor F will be instantiated with the appropriate functor depending on the handler. The
input to the operation p can not be statically inspected, since it requires an input of X,
which is not readily available, since parameters of operations of arrow computations are
not statically inspectable.

| return (x: X -> [Ai]) -> . . .: F X

| opi (p: {X -> [Ai]}, k: {F(X × Bi)}) -> . . .: F X

The applicative handler is similar to the arrow handler, but the input for the parameter
p in the operation clause does not require an input. This is because the parameters of
operations in applicative computations can be statically inspected.

| return (x: X -> [Ai]) -> . . .: F X

| opi (p: Ai, k: {F(X × Bi)}) -> . . .: F X

In contrast, our work derives the interfaces based on the theoretical background of free
monoids. We believe that the resulting handlers are equivalent, but leave defining of the
exact mapping for future work. A comparison of the interfaces by Lindley, and our derived
inductive handlers can be found in Table 3. In addition, this work could also serve as a
basis to give a denotational semantics for λ f low.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 35

Table 3: Handler Interface Comparison
Class Lindley Derived Inductive Handlers

Monad
| return (x: A) -> . . .: C

| opi (p: Ai, k: {Bi -> C})
-> . . .: C

| ε (a: A) -> . . .: FA
| opi (p: Pi,k: Ni -> FA)

-> . . .: FA

Arrow
| return (x: X -> [Ai]) -> . . .: F X

| opi (p: {X -> [Ai]},
k: {F(X × Bi)}) -> . . .: F X

| ε (f: A -> B) -> . . .: P(A,B)
| opi (p: Si, k: A -> (Di, Ni -> Z),

l: P(Z,B)) -> . . .: P(A,B)

App-
licative

| return (x: X -> [Ai]) -> . . .: F X

| opi (p: Ai, k: {F(X × Bi)})
-> . . .: F X

| ε (a: A) -> . . .: FA
| opi (p: Pi, k: Ni -> Z -> A,

l: FZ) -> . . .: FA

Free Monad/Arrow/Applicative The currently obtained interface for applicative and ar-
row handlers is similar to representing computations by expressing the free monad/ar-
row/applicative explicitly, since it is based on the same principles. These topics have been
covered before, by for example Capriotti & Kaposi (2014) and Gibbons (2016). Free
applicatives and arrows can be expressed in various ways, an alternative formulation is
given by for example Lindley (2013). Compared to these works, we derive the handler
interfaces from the general framework of monoids in monoidal categories and intend to
expose this interface via specialized language syntax. The alternative formulations are an
interesting avenue to explore the various intefaces which could be exposed by a language
supporting handlers with generalized monoidal effects.

9 Conclusion

This paper has presented interfaces for applicative and arrow handlers derived from a
unifying principle from which we also derived the conventional monadic handlers. This
unifying principle is monoids in monoidal categories and was explored in detail by Rivas
& Jaskelioff (2017). We have shown an equivalence between the initial algebra and free
monoid syntax in the monoidal setting, as well as the initial algebra and free algebra
approach in the monadic setting. We have expanded on the idea of lax monoidal functors
with an adjunction to create a conversion of programs and handlers, enabling the reuse of
handlers and programs across different monoidal categories. We have presented this work
in the context of build systems, to motivate and illustrate the approach.

Acknowledgements

We would like to thank Nicolas Wu and the anonymous reviewers for their feedback.
Exequiel Rivas was in part supported by Nomadic Labs via a grant on “Evolution, Se-
mantics, and Engineering of the F* Verification System”. This work was partly funded by
the Flemish Fund for Scientific Research (FWO), project 3E181126.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

36 R. P. Pieters, E. Rivas and T. Schrijvers

References

Bauer, A., & Pretnar, M. (2015). Programming with algebraic effects and handlers. J. log. algebr.
meth. program., 84(1), 108–123.

Brady, E. (2013). Programming and reasoning with algebraic effects and dependent types. Pages
133–144 of: Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’13. New York, NY, USA: ACM.

Capriotti, P., & Kaposi, A. (2014). Free applicative functors. Pages 2–30 of: Proceedings
5th Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS 2014,
Grenoble, France, 12 April 2014.

Feldman, Stuart I. (1979). Make-a program for maintaining computer programs. Softw., pract. exper.,
9(4), 255–65.

Gibbons, J. (2016). Free delivery (functional pearl). Pages 45–50 of: Proceedings of the 9th
International Symposium on Haskell. ACM.

Hughes, J. (2000). Generalising monads to arrows. Science of computer programming, 37(1-3).
Jane Street. (2018). Dune: A composable build system. https://github.com/ocaml/dune.
Jaskelioff, M., & O’Connor, R. (2015). A representation theorem for second-order functionals.

Journal of functional programming, 25, e13.
Kiselyov, O., & Ishii, H. (2015). Freer monads, more extensible effects. Pages 94–105 of:

Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015.

Leijen, D. (2017). Type directed compilation of row-typed algebraic effects. Pages 486–499 of:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017.

Lindley, S. (2013). Free idioms and free arrows in Haskell. https://github.com/slindley/

dependent-haskell/tree/master/Free.
Lindley, S. (2014). Algebraic effects and effect handlers for idioms and arrows. Pages 47–58 of:

Proceedings of the 10th ACM SIGPLAN Workshop on Generic Programming. WGP ’14. New
York, NY, USA: ACM.

Lindley, S., Wadler, P., & Yallop, J. (2011). Idioms are oblivious, arrows are meticulous, monads are
promiscuous. Electron. notes theor. comput. sci., 229(5), 97–117.

Lindley, S., McBride, C., & McLaughlin, C. (2017). Do be do be do. Pages 500–514 of: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL 2017.
New York, NY, USA: ACM.

Marlow, S., Peyton Jones, S., Kmett, E., & Mokhov, A. (2016). Desugaring Haskell’s do-notation
into applicative operations. Pages 92–104 of: Proceedings of the 9th International Symposium on
Haskell. Haskell 2016. New York, NY, USA: ACM.

McBride, C., & Paterson, R. (2008). Applicative programming with effects. J. funct. program.,
18(1), 1–13.

Mitchell, N. (2012). Shake before building: Replacing Make with Haskell. Pages 55–66 of:
Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming.
ICFP ’12. New York, NY, USA: ACM.

Moggi, E. (1991). Notions of computation and monads. Inf. comput., 93(1), 55–92.
Mokhov, A., Mitchell, N., & Peyton Jones, S. (2018). Build systems à la carte. PACMPL, 2(ICFP),

79:1–79:29.
Mokhov, Andrey, Lukyanov, Georgy, Marlow, Simon, & Dimino, Jerémie. (2019). Selective

applicative functors. PACMPL, 3(ICFP), 90:1–90:29.
O’Connor, R. (2014). Van Laarhoven free monad. http://r6.ca/blog/20140210T181244Z.

html.

https://github.com/ocaml/dune
https://github.com/slindley/dependent-haskell/tree/master/Free
https://github.com/slindley/dependent-haskell/tree/master/Free
http://r6.ca/blog/20140210T181244Z.html
http://r6.ca/blog/20140210T181244Z.html

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 37

Pastro, C., & Street, R. (2007). Doubles for monoidal categories. Theory and applications of
categories, 21(11).

Paterson, R. (2001). A new notation for arrows. Pages 229–240 of: Proceedings of the Sixth ACM
SIGPLAN International Conference on Functional Programming. ICFP ’01. New York, NY, USA:
ACM.

Pieters, R. P., Schrijvers, T., & Rivas, E. (2017). Handlers for non-monadic computations. Pages 4:1–
4:11 of: Proceedings of the 29th Symposium on the Implementation and Application of Functional
Programming Languages. IFL 2017. New York, NY, USA: ACM.

Plotkin, G., & Pretnar, M. (2009). Handlers of algebraic effects. Pages 80–94 of: Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings.

Rivas, E. (2018). Relating idioms, arrows and monads from monoidal adjunctions. Pages 18–33
of: Proceedings of the 7th Workshop on Mathematically Structured Functional Programming,
MSFP@FSCD 2018, Oxford, UK, 8th July 2018.

Rivas, E., & Jaskelioff, M. (2017). Notions of computation as monoids. J. funct. program., 27, e21.
Rivas, E., Jaskelioff, M., & Schrijvers, T. (2015). From monoids to nearsemirings: The essence

of MonadPlus and Alternative. Pages 196–207 of: Falaschi, Moreno, & Albert, Elvira (eds),
Proceedings of the 17th International Symposium on Principles and Practice of Declarative
Programming. PPDP’15. ACM.

Wadler, P. (1990). Comprehending monads. Pages 61–78 of: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming. LFP ’90. New York, NY, USA: ACM.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

38 R. P. Pieters, E. Rivas and T. Schrijvers

A Properties eval

This section proves some auxiliary properties related to eval.

ė = bλXc (A 1)

ṁ = bdXXe◦ (XX ⊗dXXe)◦α
−1c (A 2)

evalX e = evX ◦ (XX ⊗ e)◦ρ
−1
XX (A 3)

evalX a◦bλXc = a (A 4)

Proof

evalX a◦bλXc
= (def. evalX & def. evX)
dXXe◦ (XX ⊗a)◦ρ

−1
XX ◦bλXX c

= (ρ−1 is a natural transformation)
dXXe◦ (XX ⊗a)◦ (bλXc⊗ I)◦ρ

−1
I

= (bifunctor ⊗)
dXXe◦ (bλXc⊗X)◦ (I⊗a)◦ρ

−1
I

= (naturality d−e)
dbλXce◦ (I⊗a)◦ρ

−1
I

= (inverses)
λX ◦ (I⊗a)◦ρ

−1
I

= (λ is a natural transformation)
a◦λI ◦ρ

−1
I

= (def. monoidal category)
a◦ρI ◦ρ

−1
I

= (inverses)
a

a : I→ X

b : A⊗X → X

evalX a◦bbc = b◦ (A⊗a)◦ρ
−1
A (A 5)

Proof

evalX a◦bbc
= (def. evalX)
dXXe◦ (XX ⊗a)◦ρ

−1
XX ◦bbc

= (ρ−1 is a natural transformation)
dXXe◦ (XX ⊗a)◦ (bbc⊗ I)◦ρ

−1
A

= (bifunctor ⊗)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 39

dXXe◦ (bbc⊗ I)◦ (A⊗a)◦ρ
−1
A

= (naturality d−e)
dbbce◦ (A⊗a)◦ρ

−1
A

= (inverses)
b◦ (A⊗a)◦ρ

−1
A

B Initial Algebra Basis

This section proves the roundtrip and coherency properties for the initial algebra basis.
first some relevant definitions are repeated, then each property related to a constructor or
handler is proven in its own subsection.

B.1 Defining Properties L−M

L[a,b]M◦ ε = a (B 1)

L[a,b]M◦ ι = b◦ (Σ⊗ L[a,b]M) (B 2)

B.2 Definition µ/ins/free

µ = dL[bλΣ∗c,bι ◦ (Σ⊗ evΣ∗) ◦α
−1c]Me (B 3)

ins = ι ◦ (Σ⊗ ε)◦ρ
−1
Σ

(B 4)

free f = L[e,m◦ (f ⊗M)]M (B 5)

B.3 Roundtrip Property ι

The roundtrip property is: ι = µ ◦ (ins⊗Σ∗), the definition of ι in the free monoid basis.
We use the following local definitions to save some space:

b1 = bλΣ∗c
b2 = bι ◦ (Σ⊗ evΣ∗) ◦α

−1c
b = [b1,b2]

Proof

µ ◦ (ins⊗Σ∗)

= (def. µ and ins)
dLbMe◦ ((ι ◦ (Σ⊗ ε)◦ρ

−1
Σ

)⊗Σ∗)

= (naturality of d−e)
dLbM◦ ι ◦ (Σ⊗ ε)◦ρ

−1
Σ
e

= (property L−M & bifunctor)
dbι ◦ (Σ⊗ evΣ∗)◦α−1c◦ (Σ⊗ LbM◦ ε)◦ρ

−1
Σ
e

= (property L−M)
dbι ◦ (Σ⊗ evΣ∗)◦α−1c◦ (Σ⊗bλΣ∗c)◦ρ

−1
Σ
e

ZU064-05-FPR jfp2egui 23 March 2020 16:13

40 R. P. Pieters, E. Rivas and T. Schrijvers

= (naturality of b−c)
dbι ◦ (Σ⊗ evΣ∗)◦α−1 ◦ ((Σ⊗bλΣ∗c)⊗Σ∗)c◦ρ

−1
Σ
e

= (α−1 is a natural transformation)
dbι ◦ (Σ⊗ evΣ∗)◦ (Σ⊗ (bλΣ∗c⊗Σ∗))◦α−1c◦ρ

−1
Σ
e

= (bifunctor ⊗)
dbι ◦ (Σ⊗ (evΣ∗ ◦ (bλΣ∗c⊗Σ∗)))◦α−1c◦ρ

−1
Σ
e

= (definition evΣ∗)

dbι ◦ (Σ⊗ (dΣ∗Σ
∗
e◦ (bλΣ∗c⊗Σ∗)))◦α−1c◦ρ

−1
Σ
e

= (naturality of d−e)
dbι ◦ (Σ⊗dbλΣ∗ce)◦α−1c◦ρ

−1
Σ
e

= (inverses)
dbι ◦ (Σ⊗λΣ∗)◦α−1c◦ρ

−1
Σ
e

= (naturality of b−c)
dbι ◦ (Σ⊗λΣ∗)◦α−1 ◦ (ρ−1

Σ
⊗Σ∗)ce

= (definition monoidal category, 3.2)
dbιce

= (inverses)
ι

B.4 Roundtrip Property L−M

The roundtrip property is: L[e,g]M = evalX e ◦ freebgc, the definition of L−M in the free
monoid basis. We show that the right-hand side is an algebra homomorphism Σ∗ → X .
They are equal due to uniqueness of L[e,g]M.

Proof

evalX e◦ freebgc◦ ε

= (defs. freebgc)
evalX e◦ L[ė, ṁ◦ (bgc⊗XX)]M◦ ε

= (property L−M)
evalX e◦ ė

= (def. ė)
evalX e◦bλXc

= (property evalX)
e

evalX e◦ freebgc◦ ι

= (def. freebgc)
evalX e◦ L[ė, ṁ◦ (bgc⊗XX)]M◦ ι

= (property L−M)
evalX e◦ ṁ◦ (bgc⊗XX)◦ (Σ⊗ L[ė, ṁ◦ (bgc⊗XX)]M)

= (introduce . . . to save some space)
evalX e◦ ṁ◦ (bgc⊗XX)◦ (Σ⊗ . . .)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 41

= (def. ṁ)
evalX e◦bdXXe◦ (XX ⊗dXXe)◦α−1c◦ (bgc⊗XX)

◦(Σ⊗ . . .)

= (property evalX)
dXXe◦ (XX ⊗dXXe)◦α−1 ◦ ((XX ⊗XX)⊗ e)
◦ρ−1

XX⊗XX ◦ (bgc⊗XX)◦ (Σ⊗ . . .)

= (α−1 is a natural transformation)
dXXe◦ (XX ⊗dXXe)◦ (XX ⊗ (XX ⊗ e))◦α−1

◦ρ−1
XX⊗XX ◦ (bgc⊗XX)◦ (Σ⊗ . . .)

= (α−1 and ρ−1 are natural transformations)
dXXe◦ (XX ⊗dXXe)◦ (XX ⊗ (XX ⊗ e))
◦(bgc⊗ (XX ⊗ I))◦α−1 ◦ρ

−1
Σ⊗XX ◦ (Σ⊗ . . .)

= (bifunctor ⊗)
dXXe◦ (bgc⊗X)◦ (Σ⊗dXXe)◦ (Σ⊗ (XX ⊗ e))
◦α−1 ◦ρ

−1
Σ⊗XX ◦ (Σ⊗ . . .)

= (naturality d−e & inverses)
g◦ (Σ⊗dXXe)◦ (Σ⊗ (XX ⊗ e))◦α−1 ◦ρ

−1
Σ⊗XX ◦ (Σ⊗ . . .)

= (property α−1 ◦ρ−1 = (id⊗ρ−1))
g◦ (Σ⊗dXXe)◦ (Σ⊗ (XX ⊗ e))◦ (Σ⊗ρ

−1
XX)◦ (Σ⊗ . . .)

= (bifunctor ⊗)
g◦ (Σ⊗ (dXXe◦ (XX ⊗ e)◦ρ

−1
XX))◦ (Σ⊗ . . .)

= (def. evalX e)
g◦ (Σ⊗ evalX e)◦ (Σ⊗ . . .)

= (remove . . . & bifunctor ⊗)
g◦ (Σ⊗ (evalX e◦ L[ė, ṁ◦ (bgc⊗XX)]M))

= (def. freebgc)
g◦ (Σ⊗ (evalX e◦ freebgc))

B.5 Coherency Properties free f

The free f morphism should have the same properties as in the free monoid basis, resulting
in 3 coherency properties.

B.5.1 Property 1

We prove that free f ◦ ε = e.

Proof

free f ◦ ε

= (def. of free, B 5)
L[e,m◦ (f ⊗M)]M◦ ε

= (B 1)
e

ZU064-05-FPR jfp2egui 23 March 2020 16:13

42 R. P. Pieters, E. Rivas and T. Schrijvers

B.5.2 Property 2

We prove that free f ◦ ins = f .

Proof

free f ◦ ins
= (defs. of ins and free f)

L[e,m◦ (f ⊗M)]M◦ ι ◦ (Σ⊗ ε)◦ρ
−1
Σ

= (property of L−M)
m◦ (f ⊗M)◦ (Σ⊗ L[e, . . .]M)◦ (Σ⊗ ε)◦ρ

−1
Σ

= (bifunctor ⊗)
m◦ (f ⊗M)◦ (Σ⊗ (L[e, . . .]M◦ ε))◦ρ

−1
Σ

= (property of L−M)
m◦ (f ⊗M)◦ (Σ⊗ e)◦ρ

−1
Σ

= (bifunctor ⊗)
m◦ (M⊗ e)◦ (f ⊗ I)◦ρ

−1
Σ

= (naturality of ρ−1)
m◦ (M⊗ e)◦ρ

−1
M ◦ f

= (monoid right unit property)
ρM ◦ρ

−1
M ◦ f

= (inverses)
f

B.5.3 Property 3

We prove that free f ◦µ = m◦(free f ⊗ free f). We first show that both sides are algebra ho-
momorphisms Σ∗→MΣ∗ , by uniqueness of L−M both must be equal to L[bfree f ◦λΣ∗c,bm◦
(f ⊗dMΣ∗e)◦α−1c]M.

Proof
First we show that bfree f ◦µc= L[bfree f ◦λΣ∗c,bm◦ (f ⊗dMΣ∗e)◦α−1c]M

bfree f ◦µc◦ ε

= (naturality b−c)
bfree f ◦µ ◦ (ε⊗Σ∗)c

= (def. µ & naturality of d−e)
bfree f ◦dLbM◦ εec

= (def. free f & property of L−M)
bfree f ◦λΣ∗c

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 43

bfree f ◦µc◦ ι

= (naturality b−c)
bfree f ◦µ ◦ (ι⊗Σ∗)c

= (def. µ & naturality of d−e)
bfree f ◦dLbM◦ ιec

= (property of L−M)
bfree f ◦db2 ◦ (Σ⊗ LbM)ec

= (naturality of d−e)
bfree f ◦db2e◦ ((Σ⊗ LbM)⊗Σ∗)c

= (def. b2 & inverses)
bfree f ◦ ι ◦ (Σ⊗ evΣ∗)◦α−1 ◦ ((Σ⊗ LbM)⊗Σ∗)c

= (def. free f & property of L−M & bifunctor ⊗)
bm◦ (f ⊗ (free f ◦ evΣ∗))◦α−1 ◦ ((Σ⊗ LbM)⊗Σ∗)c

= (def. ev ∗ & naturality d−e)
bm◦ (f ⊗dfree f Σ∗e)◦α−1 ◦ ((Σ⊗ LbM)⊗Σ∗)c

= (naturality of d−e)
bm◦ (f ⊗ (dMΣ∗e◦ (free f Σ∗ ⊗Σ∗))◦α−1

◦ ((Σ⊗ LbM)⊗Σ∗)c
= (bifunctor ⊗)
bm◦ (f ⊗dMΣ∗e)◦ (Σ⊗ (free f Σ∗ ⊗Σ∗))◦α−1

◦ ((Σ⊗ LbM)⊗Σ∗)c
= (naturality of α−1 & bifunctor)
bm◦ (f ⊗dMΣ∗e)◦α−1 ◦ ((Σ⊗ (free f Σ∗ ◦ LbM)⊗Σ∗)c

= (naturality of b−c)
bm◦ (f ⊗dMΣ∗e)◦α−1c◦ (Σ⊗ (free f Σ∗ ◦ LbM))

= (LbM = bµc)
bm◦ (f ⊗dMΣ∗e)◦α−1c◦ (Σ⊗ (free f Σ∗ ◦bµc))

= (naturality of b−c)
bm◦ (f ⊗dMΣ∗e)◦α−1c◦ (Σ⊗ (bfree f ◦µc))

Then we show that bm◦ (free f ⊗ free f)c= L[bfree f ◦λΣ∗c,bm◦ (f ⊗dMΣ∗e)◦α−1c]M

bm◦ (free f ⊗ free f)c◦ ε

= (naturality of b−c)
bm◦ (free f ⊗ free f)◦ (ε⊗A∗)c

= (bifunctor ⊗)
bm◦ ((free f ◦ ε)⊗ free f)c

= (def. free f & property of L−M)
bm◦ (e⊗ free f)c

= (bifunctor ⊗ & monoid left unit property)
bλM ◦ (I⊗ free f)c

= (naturality of λ)
bfree f ◦λΣ∗c

ZU064-05-FPR jfp2egui 23 March 2020 16:13

44 R. P. Pieters, E. Rivas and T. Schrijvers

bm◦ (free f ⊗ free f)c◦ ι

= (naturality b−c & bifunctor ⊗)
bm◦ ((free f ◦ ι)⊗ free f)c

= (def. free f & property of L−M & bifunctor ⊗)
bm◦ (m⊗M)◦ ((f ⊗ free f)⊗ free f)c

= (monoid associativity property)
bm◦ (M⊗m)◦α−1 ◦ ((f ⊗ free f)⊗ free f)c

= (naturality of α−1)
bm◦ (M⊗m)◦ (f ⊗ (free f ⊗ free f))◦α−1c

= (bifunctor ⊗)
bm◦ (f ⊗ (m◦ (free f ⊗ free f)))◦α−1c

= (inverses)
bm◦ (f ⊗dbmM ◦ (free f ⊗ free f)ce)◦α−1c

= (naturality of d−e)
bm◦ (f ⊗ (dMΣ∗e◦ (bm◦ (free f ⊗ free f)c⊗Σ∗)))

◦ α−1c
= (bifunctor ⊗ & naturality of α−1)
bm◦ (f ⊗dMΣ∗e)◦α−1

◦ ((Σ⊗bm◦ (free f ⊗ free f)c)⊗Σ∗)c
= (naturality b−c)
bm◦ (f ⊗dMΣ∗e)◦α−1c◦ (Σ⊗bm◦ (free f ⊗ free f)c)

Then, using bfree f ◦ µc = L[bfree f ◦ λΣ∗c,bm ◦ (f ⊗dMΣ∗e) ◦α−1c]M = bm ◦ (free f ⊗
free f)c, we show that the property holds.

free f ◦µ

= (inverses)
dbfree f ◦µce

= (proven above)
dbm◦ (free f ⊗ free f)ce

= (inverses)
m◦ (free f ⊗ free f)

C Free Monoid Basis

This section proves the roundtrip and coherency properties for the free monoid basis.
first some relevant definitions are repeated, then each property related to a constructor
or handler is proven in its own subsection.

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 45

C.1 Defining Properties free

free f ◦ ε = e (C 1)

free f ◦ ins = f (C 2)

free f ◦µ = m◦ (free f ⊗ free f) (C 3)

, where (M,e,m) is a monoid.

C.2 Definition ι /L[e,g]M

ι = µ ◦ (ins⊗Σ
∗) (C 4)

L[e,g]M = evalX e◦ freebgc (C 5)

C.3 Roundtrip Property ins

The roundtrip property is: ins = ι ◦ (Σ⊗ ε)◦ρ
−1
Σ

, the definition of ins in the initial algebra
basis.

Proof

ι ◦ (Σ⊗ ε)◦ρ
−1
Σ

= (def ι , C 4)
µ ◦ (ins⊗Σ∗)◦ (Σ⊗ ε)◦ρ

−1
Σ

= (bifunctor ⊗)
µ ◦ (Σ∗⊗ ε)◦ (ins⊗ I)◦ρ

−1
Σ

= (monoid property)
ρΣ∗ ◦ (ins⊗ I)◦ρ

−1
Σ

= (ρ is a natural transformation)
ins◦ρΣ ◦ρ

−1
Σ

= (inverses)
ins

C.4 Roundtrip Property µ

The roundtrip property is: µ = dL[bλΣ∗c,bι ◦(Σ⊗evΣ∗) ◦α−1c]Me, the definition of µ in the
initial algebra basis. We prove this by using the fact that both sides (after b−c) are equal to
freebιc.

C.4.1 Left-Hand Side

First we show that bµc= freebιc. We show that it is a monoid homomorphism Σ∗→ Σ∗Σ
∗

and that bµc◦ ins = bιc. They are equal due to uniqueness of free.

Proof

ZU064-05-FPR jfp2egui 23 March 2020 16:13

46 R. P. Pieters, E. Rivas and T. Schrijvers

bµc◦ ε

= (naturality b−c)
bµ ◦ (ε⊗Σ∗)c

= (monoid property)
bλΣ∗c

= (def. ė)
ė

bµc◦ ins
= (naturality b−c)
bµ ◦ (ins⊗Σ∗)c

= (def ι)
bιc

bµc◦µ

= (naturality b−c)
bµ ◦ (µ⊗Σ∗)c

= (monoid property)
bµ ◦ (Σ∗⊗µ)◦α−1c

= (inverses)
bdbµce◦ (Σ∗⊗dbµce)◦α−1c

= (naturality d−e & bifunctor ⊗)
bdΣ∗Σ∗e◦ (bµc⊗ (dΣ∗Σ∗e◦ (bµc⊗Σ∗)))◦α−1c

= (bifunctor ⊗)
bdΣ∗Σ∗e◦ (Σ∗Σ∗ ⊗dΣ∗Σ∗e)◦ (bµc⊗ (bµc⊗Σ∗))◦α−1c

= (α−1 is a natural transformation)
bdΣ∗Σ∗e◦ (Σ∗Σ∗ ⊗dΣ∗Σ∗e)◦α−1 ◦ ((bµc⊗bµc)⊗Σ∗)c

= (naturality b−c)
bdΣ∗Σ∗e◦ (Σ∗Σ∗ ⊗dΣ∗Σ∗e)◦α−1c◦ (bµc⊗bµc)

= (def. ṁ)
ṁ◦ (bµc⊗bµc)

C.4.2 Right-Hand Side

We use the following local definitions for readability

b1 = bλΣ∗c
b2 = bι ◦ (Σ⊗ evΣ∗) ◦α

−1c

We show that L[b1,b2]M = freebιc. We show that it is a monoid homomorphism Σ∗→ Σ∗Σ
∗

and that L[b1,b2]M◦ ins = bιc. They are equal due to uniqueness of free.

Proof

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 47

L[b1,b2]M◦ ε

= (def. L−M)
eval

Σ∗Σ∗ b1 ◦ freebb2c◦ ε

= (property free)
eval

Σ∗Σ∗ b1 ◦bλΣ∗Σ∗ c
= (property eval)

b1

= (expand b1)
bλΣ∗c

= (def. ė)
ė

L[b1,b2]M◦ ins
= (def. L−M)

eval
Σ∗Σ∗ b1 ◦ freebb2c◦ ins

= (property free)
eval

Σ∗Σ∗ b1 ◦bb2c
= (property eval)

b2 ◦ (Σ⊗b1)◦ρ
−1
Σ

= (expand b2)
bι ◦ (Σ⊗ evΣ∗)◦α−1c◦ (Σ⊗b1)◦ρ

−1
Σ

= (naturality b−c)
bι ◦ (Σ⊗ evΣ∗)◦α−1 ◦ ((Σ⊗b1)⊗Σ∗)◦ (ρ−1

Σ
⊗Σ∗)c

= (α−1 is a natural transformation)
bι ◦ (Σ⊗ evΣ∗)◦ (Σ⊗ (b1⊗Σ∗))◦α−1 ◦ (ρ−1

Σ
⊗Σ∗)c

= (def. ev)
bι ◦ (Σ⊗dΣ∗Σ∗e)◦ (Σ⊗ (b1⊗Σ∗))◦α−1 ◦ (ρ−1

Σ
⊗Σ∗)c

= (bifunctor ⊗ & naturality d−e)
bι ◦ (Σ⊗db1e)◦α−1 ◦ (ρ−1

Σ
⊗Σ∗)c

= (expand b1 & inverses)
bι ◦ (Σ⊗λΣ∗)◦α−1 ◦ (ρ−1

Σ
⊗Σ∗)c

= (def. monoidal category)
bιc

L[b1,b2]M◦µ

= (def. L−M)
eval

Σ∗Σ∗ b1 ◦ freebb2c◦µ

= (freebb2c= bṁc◦ freebιc)
eval

Σ∗Σ∗ b1 ◦bṁc◦ freebιc◦µ

= (eval
Σ∗Σ∗ b1 ◦bṁc= Σ∗Σ

∗
)

freebιc◦µ

= (property free)
ṁ◦ (freebιc⊗ freebιc)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

48 R. P. Pieters, E. Rivas and T. Schrijvers

= (eval
Σ∗Σ∗ b1 ◦bṁc= Σ∗Σ

∗
)

ṁ◦ ((eval
Σ∗Σ∗ b1 ◦bṁc◦ freebιc)⊗

(eval
Σ∗Σ∗ b1 ◦bṁc◦ freebιc))

= (freebb2c= bṁc◦ freebιc)
ṁ◦ ((eval

Σ∗Σ∗ b1 ◦ freebb2c)⊗ (eval
Σ∗Σ∗ b1 ◦ freebb2c))

= (def. L−M)
ṁ◦ (L[b1,b2]M⊗ L[b1,b2]M)

Equality freebb2c= bṁc◦ freebιc holds since

bṁc◦ freebιc◦ ins
= (property free)
bṁc◦ bιc

= (def. ṁ)
bbevΣ∗ ◦ (Σ∗Σ

∗ ⊗ evΣ∗)◦α−1cc◦ bιc
= (naturality b−c)
bbevΣ∗ ◦ (Σ∗Σ

∗ ⊗ evΣ∗)◦α−1c◦ (bιc⊗Σ∗Σ
∗
)c

= (naturality b−c)
bbevΣ∗ ◦ (Σ∗Σ

∗ ⊗ evΣ∗)◦α−1 ◦ ((bιc⊗Σ∗Σ
∗
)⊗Σ∗)cc

= (α−1 is a natural transformation)
bbevΣ∗ ◦ (Σ∗Σ

∗ ⊗ evΣ∗)◦ (bιc⊗ (Σ∗Σ
∗ ⊗Σ∗))◦α−1cc

= (bifunctor ⊗)
bbevΣ∗ ◦ (bιc⊗Σ∗)◦ (Σ⊗ evΣ∗)◦α−1cc

= (def. evΣ∗)
bbdΣ∗Σ∗e◦ (bιc⊗Σ∗)◦ (Σ⊗ evΣ∗)◦α−1cc

= (naturality d−e)
bbdbιce◦ (Σ⊗ evΣ∗)◦α−1cc

= (inverses)
bbι ◦ (Σ⊗ evΣ∗)◦α−1cc

= (def. b2)
bb2c

, and bṁc and freebιc are both monoid homorphisms and thus their composition is a
monoid homomorphism, meaning bṁc◦ freebιc◦ε = ë and bṁc◦ freebιc◦µ = m̈◦ (bṁc◦
freebιc⊗bṁc◦ freebιc). Since freebb2c is the unique monoid homomorphism, freebb2c=
bṁc◦ freebιc.

Where ṁ and m̈ are specialized to m̈ : (Σ∗Σ
∗
)(Σ
∗Σ∗) ⊗ (Σ∗Σ

∗
)(Σ
∗Σ∗) → (Σ∗Σ

∗
)(Σ
∗Σ∗) and

ṁ : Σ∗Σ
∗ ⊗Σ∗Σ

∗ → Σ∗Σ
∗

for this case.

C.4.3 Property Proof

Then, using L[b1,b2]M = freebιc= bµc, we show that the roundtrip property holds.

Proof

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 49

dL[bλΣ∗c,bι ◦ (Σ⊗ evΣ∗) ◦α−1c]Me
= (proven above)
dbµce

= (inverses)
µ

C.5 Roundtrip Property free

The roundtrip property is: free f = L[e,m ◦ (f ⊗M)]M, the definition of free f in the initial
algebra basis. We show that the right-hand side is a monoid homomorphism Σ∗→M and
L[e,m◦ (f ⊗M)]M◦ ins = f . They are equal due to uniqueness of free.

Proof

L[e,m◦ (f ⊗M)]M◦ ε

= (def. L−M)
evalM e◦ freebm◦ (f ⊗M)c◦ ε

= (property free)
evalM e◦ ė

= (def. ė & property eval)
e

L[e,m◦ (f ⊗M)]M◦ ins
= (def. L−M)

evalM e◦ freebm◦ (f ⊗M)c◦ ins
= (property free)

evalM e◦bm◦ (f ⊗M)c
= (property eval)

m◦ (f ⊗M)◦ (Σ⊗ e)◦ρ
−1
Σ

= (bifunctor ⊗)
m◦ (M⊗ e)◦ (f ⊗ I)◦ρ

−1
Σ

= (monoid property)
ρM ◦ (f ⊗ I)◦ρ

−1
Σ

= (ρ is a natural transformation)
f ◦ρΣ ◦ρ

−1
Σ

= (inverses)
f

L[e,m◦ (f ⊗M)]M◦µ

= (def. L−M)
evalM e◦ freebm◦ (f ⊗M)c◦µ

= (freebm◦ (f ⊗M)c= bmc◦ free f)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

50 R. P. Pieters, E. Rivas and T. Schrijvers

evalM e◦bmc◦ free f ◦µ

= (evalM e◦bmc= M)
free f ◦µ

= (property free)
m◦ (free f ⊗ free f)

= (evalM e◦bmc= M)
m◦ ((evalM e◦bmc◦ free f)⊗ (evalM e◦bmc◦ free f))

= (freebm◦ (f ⊗M)c= bmc◦ free f)
m◦ ((evalM e◦ freebm◦ (f ⊗M)c)⊗ (evalM e◦ freebm◦ (f ⊗M)c))

= (def. L−M)
m◦ (L[e,m◦ (f ⊗M)]M⊗ L[e,m◦ (f ⊗M)]M)

Equality freebm◦ (f ⊗M)c= bmc◦ free f holds since

bmc◦ free f ◦ ins
= (property free)
bmc◦ f

= (naturality b−c)
bm◦ (f ⊗M)c

, and bmc and free f are both monoid homorphisms and thus their composition is a monoid
homomorphism, meaning bmc◦ free f ◦ε = ė and bmc◦ free f ◦µ = ṁ◦(bmc◦ free f ⊗bmc◦
free f). Since freebm◦(f ⊗M)c is the unique monoid homomorphism, freebm◦(f ⊗M)c=
bmc◦ free f .

C.6 Coherency Properties L−M

The L[a,b]M morphism should have the same properties as in the initial algebra basis,
resulting in 2 coherency properties.

C.6.1 Property 1

We prove that L[a,b]M◦ ε = a.

Proof

L[a,b]M◦ ε

= (def. L[a,b]M)
evalX a◦ freebbc◦ ε

= (property free)
evalX a◦bλXc

= (property eval)
a

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 51

C.6.2 Property 2

We prove that L[a,b]M◦ ι = b◦ (Σ⊗ L[a,b]M).

Proof

L[a,b]M◦ ι

= (def. of ι and L[a,b]M)
evalX a◦ freebbc◦µ ◦ (ins⊗Σ∗)

= (property free)
evalX a◦ ṁ◦ (freebbc⊗ freebbc)◦ (ins⊗Σ∗)

= (bifunctor ⊗ & free f ◦ ins = f)
evalX a◦ ṁ◦ (bbc⊗ freebbc)

= (def. evalX a)
evX ◦ (XX ⊗a)◦ρ

−1
XX ◦ ṁ◦ (bbc⊗ freebbc)

= (ρ−1 natural transformation)
evX ◦ (XX ⊗a)◦ (ṁ⊗ I)◦ρ

−1
XX⊗XX ◦ (bbc⊗ freebbc)

= (bifunctor ⊗)
evX ◦ (ṁ⊗X)◦ ((XX ⊗XX)⊗a)◦ρ

−1
XX⊗XX

◦(bbc⊗ freebbc)
= (def. evX and ṁ)
dXXe◦ (bdXXe◦ (XX ⊗dXXe)◦α−1c⊗X)

◦((XX ⊗XX)⊗a)◦ρ
−1
XX⊗XX ◦ (bbc⊗ freebbc)

= (naturality d−e & inverses)
dXXe◦ (XX ⊗ evX)◦α−1 ◦ ((XX ⊗XX)⊗a)◦ρ

−1
XX⊗XX

◦ (bbc⊗ freebbc)
= (α−1 natural transformation)
dXXe◦ (XX ⊗dXXe)◦ (XX ⊗ (XX ⊗a))◦α−1 ◦ρ

−1
XX⊗XX

◦ (bbc⊗ freebbc)
= (property α−1 ◦ρ−1 = id⊗ρ−1)
dXXe◦ (XX ⊗dXXe)◦ (XX ⊗ (XX ⊗a))◦ (XX ⊗ρ

−1
XX)

◦ (bbc⊗ freebbc)
= (bifunctor ⊗)
dXXe◦ (XX ⊗ (dXXe◦ (XX ⊗a)◦ρ

−1
XX ◦ freebbc))

= (def. of evalX a)
dXXe◦ (XX ⊗ (evalX a◦ freebbc))◦ (bbc⊗Σ∗)

= (def. of L[a,b]M)
dXXe◦ (XX ⊗ L[a,b]M)◦ (bbc⊗Σ∗)

= (bifunctor ⊗)
dXXe◦ (bbc⊗XX)◦ (Σ⊗ L[a,b]M)

= (naturality d−e & inverses)
b◦ (Σ⊗ L[a,b]M)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

52 R. P. Pieters, E. Rivas and T. Schrijvers

D Coherency Properties handle

The handle with h operation in the initial algebra basis should have the same proper-
ties as in the free algebra basis. This results in 2 coherency properties for the operation and
value rule respectively.

In the following proofs, we assume the following is defined:
h =

handler

| val (a: A) -> . . .: X (v)
| opi (pi: Pi,k: Ni -> X) -> . . .: X (ci)

ih =

ihandler

| ε (a: A)

-> λ(f: A -> X). f a (e)
| opi (pi: Pi,k: Ni -> ((A -> X) -> X))

-> λ(f:A -> X). ci (pi, λ(n: Ni). k n f) (gi)

D.1 Coherency Property: Value Rule

handle (x: A) with h

= (def. handle)

(ihandle (x: A) with ih) v
= (ε rule)

(e x) v
= (def. e)
((λ a. λf. f a) x) v

= (application)

(λf. f x) v
= (application)

v x

D.2 Coherency Property: Operation Rule

handle (opi (p: Pi, �: Ni -> Σ∗A)) with h

= (def. handle)

(ihandle (opi (p: Pi, �: Ni -> Σ∗A)) with ih) v
= (ι rule)

(gi (p, λn. ihandle (� n) with ih)) v
= (def. gi)

((λ(pi,k). λf. ci (pi, λn. k n f))

(p, λn. ihandle (� n) with ih)) v
= (α-renaming & application)

(λf. ci (p, λn. (λx. ihandle (� x) with ih) n f)) v
= (application)

ci (p, (λn. λx. ihandle (� x) with ih) n v))
= (application)

ZU064-05-FPR jfp2egui 23 March 2020 16:13

Generalized Monoidal Effects And Handlers 53

ci (p, (λn. ihandle (� n) with ih) v)
= (def. handle)

ci (p, λn. handle (� n) with h)

E Conversion Diagram

We show that both paths of the diagram are equal to L[i′,a′ ◦ (g⊕FX)]M. First we repeat
some relevant definitions, then prove the algebra conversion path and lastly prove the
program conversion path.

E.1 Definitions

E.1.1 Signature Conversion

f : LΞ→ Σ

g : Ξ→ RΣ = T f U

E.1.2 Algebra Conversion

The original algebra components are:

i : J→ X

a : Σ⊕X → X

The transformed algebra components are:

i′ : I→ RX = Ri◦φ
0

a′ : RΣ⊗RX → RX = Ra◦φ

E.2 Algebra Conversion

We have to show that h′ ◦hoist g = L[i′,a′ ◦ (g⊗RX)]M.

Proof
Both h′ = L[i′,a′]M and hoist g = L[ε, ι ◦ (g⊗ (RΣ)⊗)]M are algebra homomorphisms. Their
composition is equal to L[i′,a′ ◦ (g⊗RX)]M since it is the unique algebra homomorphism.

E.3 Program Conversion

Both h = L[i,a]M and hoist f = L[ε, ι ◦ (f ⊕Σ⊕)]M are algebra homomorphisms. Their com-
position is an algebra homomorphism and thus it is equal to ah = L[i,a◦ (f ⊕X)]M since it
is unique.

ah = L[i,a◦ (f ⊕X)]M

convert = freeTinsLΞU

= L[Rε ◦φ
0,Rµ ◦φ ◦ (TinsLΞU⊕R((LΞ)⊕))]M

ZU064-05-FPR jfp2egui 23 March 2020 16:13

54 R. P. Pieters, E. Rivas and T. Schrijvers

We have to show that Rh◦R(hoist f)◦ convert = R(ah)◦ convert = L[i′,a′ ◦ (g⊗RX)]M.
We show that R(ah) ◦ convert is an algebra homomorphism Ξ⊗→ RX , then it is equal to
L[i′,a′ ◦ (g⊗RX)]M due to its uniqueness.

Proof

R(ah)◦ convert ◦ ε

= (def. convert & property L−M)
R(ah)◦Rε ◦φ 0

= (functor R)
R(ah◦ ε)◦φ 0

= (def. ah & property L−M)
Ri◦φ 0

= (def. i′)
i′

R(ah)◦ convert ◦ ι

= (def. convert & property L−M)
R(ah)◦Rµ ◦φ ◦ (TinsLΞU⊗R((LΞ)⊕))◦ (Ξ⊗ convert)

= (bifunctor ⊗)
R(ah)◦Rµ ◦φ ◦ (TinsLΞU⊗ convert)

= (naturality T−U)
R(ah)◦Rµ ◦φ ◦ ((R(insLΞ)◦TLΞU)⊗ convert)

= (bifunctor ⊗)
R(ah)◦Rµ ◦φ ◦ (R(insLΞ)⊗R((LΞ)⊕))◦ (TLΞU⊗ convert)

= (φ is a natural transformation)
R(ah)◦Rµ ◦R(insLΞ⊕ (LΞ)⊕)◦φ ◦ (TLΞU⊗ convert)

= (def. ι)
R(ah)◦Rι ◦φ ◦ (TLΞU⊗ convert)

= (functor R)
R(ah◦ ι)◦φ ◦ (TLΞU⊗ convert)

= (def. ah & property L−M)
R(a◦ (f ⊕X)◦ (LΞ⊕ah))◦φ ◦ (TLΞU⊗ convert)

= (functor R)
Ra◦R(f ⊕X)◦R(LΞ⊕ah)◦φ ◦ (TLΞU⊗ convert)

= (φ is a natural transformation)
Ra◦φ ◦ (R f ⊗RX)◦ (R(LΞ)⊗R(ah))◦ (TLΞU⊗ convert)

= (bifunctor ⊗)
Ra◦φ ◦ ((R f ◦TLΞU)⊗RX)◦ (Ξ⊗ (R(ah)◦ convert))

= (naturality T−U)
Ra◦φ ◦ (T f U⊗RX)◦ (Ξ⊗ (R(ah)◦ convert))

= (def. g & def. a′)
a′ ◦ (g⊗RX)◦ (Ξ⊗ (R(ah)◦ convert))

	Introduction
	Motivation
	Notation in Code Examples
	Motivating Use Case: Build Systems
	Different Classes of Computations
	Analysis with Non-Monadic Handlers
	Background
	Notational Conventions
	Algebraic Effects and Handlers
	Monoids in Monoidal Categories
	Handlers for Free Monoids
	Monoidal Handlers
	Inductive Handlers
	Expressiveness of Monoidal and Inductive Handlers
	Expressiveness of Monoidal and Free Algebra Handlers
	Summary
	Non-Monadic Handlers
	Applicative Handlers
	Arrow Handlers
	Reusing Handlers and Programs
	Monoidal Functors & Adjunctions
	Transformation-based Approach
	Instances

	Use of Non-Monadic Handlers in Build Systems
	Task in Original Build System Model
	Relation to Monoidal Effects And Handlers
	Arrow Tasks
	Overview Build Systems

	Related Work

	Conclusion

	References
	Properties eval
	Initial Algebra Basis
	Defining Properties -
	Definition /ins/free
	Roundtrip Property
	Roundtrip Property -
	Coherency Properties freef
	Free Monoid Basis
	Defining Properties free
	Definition /[e,g]
	Roundtrip Property ins
	Roundtrip Property
	Roundtrip Property free
	Coherency Properties -
	Coherency Properties handle
	Coherency Property: Value Rule
	Coherency Property: Operation Rule
	Conversion Diagram
	Definitions
	Algebra Conversion
	Program Conversion

