PaSe: An Extensible and
Inspectable DSL
for Micro-Animations

Ruben Pieters & Tom Schrijvers

https://hike.one/update/why-use-micro-animations-in-your-design

INNATE: Cornelius gets an extra R dice every turn.

Cornelius Bx0
80/80

NEXT UP (8 left)

Sweets
Robot
Buzzer

SNAP!

Exchange matching
cards for dice

Do ## 3 damage Heal == 2 heatth

Jester Bix3
34/34

- Atomic Operations
- Combination Facilities

Operations

Animates an element relative to the x, y and angle values of an SVG path element.
var myPath = anime.path('svg path');

The path function returns a new Function that returns the specified property.
Motion path animations are responsive since v3

MORPHING
PARAMETERS | EXAMPLE INFO

myPath('x") Return the current x value in 'px' of the SVG path
myPath('y") Return the current y value in 'px' of the SVG path

y N myPath('angle') Return the current angle value in 'degrees' of the SVG path
| MORPHING
| LINE DRAWING

LINE DRAWING

var path = anime.path('.motion-path-demo path');

anime ({
targets: '.motion-path-demo .el',
translateX: path('x'),
translateY: path('y'),

EASINGS rotate: path('angle'),

easing: 'linear’',
duration: 2000,
loop: true

H;

LINEAR

https://animejs.com/documentation

Operations

r = linearTo (box . x) (For ©0.5) (To 50)

I | |

arget

P

PaSe

Operations

u = linearTo (box . y) (For 06.5) (To 50)

PaSe

- Atomic Operations
- Combination Facilities

Combination

CALLBACKS & PROMISES BEGIN & COMPLETE

BEGIN & COMPLETE begin() callback is triggered once, when the animation starts playing.

complete() callback is triggered once, when the animation is completed.

progress : 100%
began : true Both begin() and complete() callbacks are called if the animation's duration is 0.
completed : true

TYPE PARAMETERS | INFO

X S h P, s
LOOPBEGIN & LOOPCOMPLETE Function = animation Return the current animation Object

CALLBACKS & PROMISES -
. CODE EXAMPLE

| UPDATE

| BEGIN & COMPLETE

LOOPBEGIN & anime({ ' ' ,
LOOPCOMPLETE targets: '.begin-complete-demo .el',

| CHANGE translateX: 240,
CHANGEBEGIN & CHANGE delay: 1000,
CHANGECOMPLETE easing: 'easeInOutCirc',
| FINISHED PROMISE update: function(anim) {
progressLogEl.value = 'progress : ' + Math.round(anim.progress) + '%';
. beginLogEl.value = 'began : ' + anim.began;
completeLogEl.value = 'completed : ' + anim.completed;
}
begin: function(anim) {
beginLogEl.value = 'began : ' + anim.began;
CHANGEBEGIN & CHANGECOMPLETE I8
complete: function(anim) {
completeLogEl.value = 'completed : ' + anim.completed;

https://animejs.com/documentation

Combination

upThenRight =

PaSe

u sequential r

Combination

diagonal = u parallel r

PaSe

Round 1:
Semantics

a sequential b

a parallel b

(a

- a onComplete b
(= a.onComplete(() => b.play()))

18]

a onComplete” (b "onComplete «c)

a b C

b

~

onBegin

~

d

@ Ren'Py Documentation

Animation and Transformation
Language
Ren'Py Script Statements
Transform Statement
Image Statement With ATL Block

Scene and Show Statements with
ATL Block

ATL Syntax and Semantics

ATL Statements
Interpolation Statement
Time Statement
Expression Statement
Pass Statement
Repeat Statement
Block Statement
Choice Statement
Parallel Statement
Event Statement
On Statement

Contains Statement

Home Page Online Documentation Search

Parallel Statement

The paraiiel statementis used to define a set of ATL blocks to execute in parallel.

atl parallel ::=

atl block

Parallel statements are greedily grouped into a parallel set when more than one parallel statement appears consecutively in a block. The
blocks of all parallel are then i The parallel terminates when the last block terminates.

The blocks within a set should be independent of each other, and manipulate different properties. When two blocks change the same
property, the result is undefined.

All QML Types
All Qt Modules

same time.
Qt Creator Manual

All Qt Reference

Documentation import
{
id: rect
width: ; height
Getting Started color:

Getting Started with Qt
What's New in Qt 5 running: true
Examples and Tutorials

{ target:
Supported Platforms

Qt Licensing

{ target: rect; property

property

to:

; duration:
; duration:

Blog

Contact Us

The following animation runs two number animations in parallel. The Rectangle moves to (50,50) by animating its X and y properties at the

o
(]

B GoAp 3 LSRR
i

Sequencing with Timelines

z Choreographing complex sequences is crazy simple with GSAP's Timelines.

A timeline is a container for tweens where you place them in time (like a schedule). They can overlap or have gaps
between them; you have total control. As the timeline's playhead moves, it scrubs across its child tweens and
renders them accordingly! Insert as many as you want and control the entire group as a whole with the standard
methods (play() , reverse() , pause() , etc.). You can even nest timelines within timelines!

Once you get the hang of timelines, a whole new world of possibilities will open up. They provide a fantastic way to
modularize your animation code.

When to Use a Timeline

e To control a group of animations as a whole.

e To build a sequence without messing with lots of delay values (progressively build so that timing
adjustments to earlier animations automatically affect later ones, greatly simplifying experimentation and
maintenance).

e To modularize your animation code.

e To do any kind of complex choreographing.
e To fire callbacks based on a group of animations (like "after all of these animations are done, call
myFunction() ").

https.//greensock.com/get-started

Round 2:
EXpressivity

i)

- (b "onComplete” c) "onBegin a

if duration a > duration b
then (a "onComplete” c) "onBegin b
else (b "onComplete” c) "onBegin a

(a

QLI '._-' X
L e

ey
RS Ny 0
A > o T AR t'-}’g.ﬁf.'j-*:- e 2
A z . SRy :
e O Ty RO T M I Ao Sy o %ﬁ N
S R e

- function ifThenElse(anim, cond, ifA, elseA){
~ anim.onComplete(() => if (cond()) {
ifA.play()
} else {
elseA.play()
1)

return anim;

ifThenElse anim cond ifA elseA = ?

a onComplete b

onComplete
Animation -> (() -> I0 ()) -> Animation
play :: Animation -> I0 ()

Round 3:
Inspectability

duration (a sequential” b) =

duration a + duration b ———
duration (a "parallel” b) = a
max (duration a) (duration b) b
!_'_l
duration op = <basic value> op

function duration(anim) {
const basicDur = <basic value>;
// analyze all callbacks to fetch
// additional duration
const additionalDur = ...;
return basicDur + additionalDur;

" RS NI 1
L R A R IO R

= PP Tl Fe s X R VN O A.{‘-\‘L..;_. o Vg
v \‘,:;_, R O E e LAy i ATy T Y
YD AR Y A S {iy, A A s

A& GSAP 3 L

animl
.add(() => anim2.play())
.add(() => anim3.play());

animl anim2 anim3

-

animl
.add(() => anim2.play())
.add(() => anim3.play(), "-=0.5");

animl anim2

anim3

t
>
-
0.5 o

ifThenElse(animl, cond, ifA, elseA)
.add(() => anim2.play(), "-=0.5");

Expected: ifA

animl anim2

elseA

ifThenElse(animl, cond, ifA, elseA)
.add(() => anim2.play(), "-=0.5");

Reality: ifA

animl

anim2

Inspectability

ifThenElse(animl, cond, ifA, elseA)
.add(() => anim2.play(), "-=0.5");

Reality:

animl

duration =0

410)

olution

41

o

<

—~— .

B
B S S o N
1R GF T RIANE .»xk, R S
R AR A R R

u sequential r

u parallel r

+

ifThenElse anim cond ifA elseA

+

ifThenElse cond ifA elseA

2l P Ay ’;' -

- w03 S Y Ve "

o3 P _'r‘-,? ﬂ. ,b‘e’v [

s AR XN RN S A S
AR YA

ifThenElse cond ifA elseA
N

do
bool <- cond

if bool then ifA else elseA

ifThenElse cond ifA elseA

duration (ifThenElse cond ifA elseA)
=47

ifThenElse cond ifA elseA

duration (ifThenElse cond ifA elseA)
= if (duration ifA == duration elseA)
then duration ifA
else error

ifThenElse cond ifA elseA

maxDur (ifThenElse cond ifA elseA)
= max (maxDur 1ifA) (maxDur elseA)

a .'

N7 PR C Ay e~
€~’LA.‘E‘~: "."}?gh/ Y g S

AR ;;»fi."i{“Jﬂt)x*&* e

relSequential
(animl " sequential”™ (ifThenElse cond ifA elseA))
anim3
9.5 ifA
animl anim3
elseA
anim3 ¢
= >

- Keep your semantics in mind to avoid
unintuitive behaviour

- Enable inspectability with structured
representation

- Keep expressivity by using an open encoding

rubenpieters =) ruben.pieters@cs.kuleuven.be

. 7 e
o :'«: '57& e
U SAT S 4%, K i o .
A ’“ -'t.-\"k'(;r’E 4‘«‘ Jtt)«'{‘ SR

https://dtai.cs.kuleuven.be/events/fpcourse
fpcourse@cs.kuleuven.be

Functional Progromming ¢

Domain-Specific Languoges

