(Non-)Monadic
Effect Handlers

Ruben Pieters

Situation: Card Effects

Red Rarity v Type ¥ A-Z a *

Block no longer If your HP i below e Whenever a card is WECHENES Yo e

expires at the start of 50%,gain @at the Abtie slatiof your Exhausted, Sy Apa ;eft‘: o

turn, lose 1 HP and

your turn. start of each turn. draw 1 card.

draw a card.

Shuffle 2 Wounds into
your draw pile. Gain 2 Strength. {‘xltr;h; :i:d:io; 'llzl)ock“r

At the end of your x

turn, lose 1 HP and Whei]:’g:[m;;oia a

deal 4 damage to Skill })d:rausg ity ‘Whenever you draw a
LL enemies. J > Wound, draw 1 card.

@ View Upgrade

I I Choose an Exhausted | 1 Lose S HP.
e | This tu,your next | ardandputitin | Gan3osodk | e,

* Game images in this presentation are from Slay the Spire (Mega Crit)

Situation: Card Effects

Deal 6 damage.

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

Gain 5 Block.
Deal 5 damage.

Bugs

= Torli gets a description that reflects what it does.

Bugs

Automate Description

[State -> State]
a D /
\. y \\\\\ﬁlk

[String]

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.

1. 2.
Data Effect
Types Handlers

PN EFF

1. 2. 3.
Data Efact Non-

Types Handless Monadic
Effect
Handlers

EFF

1

Data Types

Data Types |

data Card

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

Gain 5 Block.
Deal 5 damage.

10

Data Types |

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

Gain 5 Block.
Deal 5 damage.

data Card
= Dmg Int
| Block Int

1

Data Types |

12

Data Types |

Gain 5 Block.

13

Data Types |

apply ::

Card -> State -> State

14

Data Types |

apply ::

Card -> (State -> State)

15

Data Types |

apply :: Card -> State -> State
apply (Dmg x) state = <new state>

apply (Block x) state = <new state>

16

Data Types |

apply ::[Card]—>[State]—> State

apply (Dmg x) state = <new state>
apply (Block x) state = <new state>

> apply |(Dmg 6)|[(10, 10) |
(4,10)

17

Data Types |

apply ::[Card]—>[State]—> State

apply (Dmg x) state = <new state>
apply (Block x) state = <new state>

> apply |(Block 5)|[(10, 10) |
(10,15)

18

Data Types |

desc ::

Card -> String

19

Data Types |

desc :: Card -> String
desc (Dmg x) =
"deal " ++ show x ++ " damage"

20

Data Types |

desc ::

Card -> String

desc (Dmg x) = [i|deal #{x} damage]]

A

Data Types |

desc :: Card -> String
desc (Dmg x) = [i|deal #{x} damage]]
desc (Block x) = [i|gain #{x} block]|]

22

Data Types |

(1)

Deal 6 damage.

desc :: Card -> String

desc (Dmg x) =
desc (Block x)

> desc (Dmg 6)
"deal 6 damage"

[i|deal #{x} damage]]
= [i|gain #{x} block|

]

23

Data Types |

desc :: Card -> String

desc (Dmg x) = [i|deal #{x} damage]]

desc (Block x) =

> desc (Block 5)
"gain 5 block"

[i|gain #{x} block]|]

24

Data Types Il

Deal 5 damage twice.

Gain 5 Block.
Deal 5 damage.

Deal 4 damage to ALL

Exhaust.

enemies. Heal HP equal |
to unblocked damage. |

25

Data Types Il

IronjWave'

Gain 5 Block.

AN =

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

Deal 5 damage.

26

Data Types Il

Deal 5 damage twice.

data Card

= Dmg Int

| Block Int
[l TimesX Int Card]

27

Data Types Il

28

Data Types Il

apply :: Card -> State -> State

apply (...) = ...
apply (TimesX 0 a) s

I
(/)

apply (TimesX x c) s = let
s' = apply ¢ s
in apply (TimesX (x - 1) c) s'

Data Types Il

apply :: Card -> State -> State
apply (...) = ...
apply (TimesX 0 a) s
apply (TimesX x s = let

s' =[apply c s]

in apply (TimesX (x - 1) c) s'

I
(/)

Data Types Il

apply :: Card -> State -> State

apply (...) = ...
apply (TimesX 0 c) s
apply (TimesX x c) s

[:] = apply c¢ s

let

in[apply (TimesX (x

1) c) s']

31

Data Types Il

Deal 5 damage twice.

apply ::

Card -> State -> State

apply (...) = ...

> apply (TimesX 2 (Dmg 5)) (10,

(0,10)

10)

32

Data Types Il

desc :: Card -> String
desc (...) = ...
desc (TimesX x c) =

[1|#{desc c}, #{x} times]|]

KX}

Data Types Il

desc :: Card -> String
desc (...) = ...
desc (TimesX x c) =

[i|[#{desc c}] #{x} times|]

KZ)

Data Types Il

desc :: Card -> String
desc (...) = ...
desc (TimesX x c) =

[i|#{desc c}[, #{x)} times]l]

35

Data Types Il

Deal 5 damage twice.

'P

desc :: Card -> String
desc (...) =
desc (TimesX x c) =

[i|#{desc c}, #{x} times]|]

> desc (TimesX 2 (Dmg 5))

"deal 5 damage, 2 times"

36

Data Types Il

Deal 5 damage twice. ‘

desc :: Card -> String

desc (...) =

> desc (TimesX 2 (Dmg 5))

"deal 5 damage '

37

Data Types Il

Deal 4 damage to ALL
enemies. Heal HP equal

. g to unblocked damage.
Deal 5 damage twice. T |
!

— &

Data Types Il

Gain 5 Block.
Deal 5 damage.

——

data Card

= Dmg Int

| Block Int
[l And Card Card:]

39

Data Types Il

40

Data Types llI

apply :: Card -> State -> State
apply (...) =
apply (And cl c2) s = let
afterl = apply cl s
in apply c2 afterl

41

Data Types llI

apply :: Card -> State -> State
apply (...) = ...

apply (And|cl|c2) s = let
afterl =|apply cl s]

in apply c2 afterl

42

Data Types Il

apply :: Card -> State -> State

apply (...) = ...
apply (And cl c2) s = let

afterl |= apply cl s
in |apply c2 afterl]

43

Data Types llI

desc :: Card -> String

desc (...) = ...
desc (And cl c2)
[1|#{desc cl},

then #{desc c2}|]

44

Data Types Il

apply :: Card -> State -> State

apply (...) = ...
> apply
(And (Block 5) (Dmg 5))
Gain 5 Block. '
Deal 5 damage. (10, 10)
| (5,15)

Data Types Il

Gain 5 Block.
Deal 5 damage.

desc :: Card -> String
desc (...) =
desc (And cl c2) =
[1|#{desc cl}, then #{desc c2}|]

> desc (And (Block 5) (Dmg 5))
"gain 5 block, then deal 5 damage"

46

Data Types Il

47

Data Types Il

apply :: Card -> State -> State
apply (...) = ...

> apply (And (Dmg 5) (Dmg 5)) (10, 10)
(0,10)

Deal 5 damage twice.

48

Data Types Il

Deal 5 damage twice.

desc :: Card -> String
desc (...) =
desc (And cl c2) =
[1|#{desc cl}, then #{desc c2}|]

> desc (And (Dmg 5) (Dmg 5))
"deal 5 damage, then deal 5 damage"

49

Data Types Il

Deal 5 damage twice.

desc :: Card -> String
desc (...) =
desc (And cl c2) =
[1|#{desc cl}, then #{desc c2}|]

> desc (And (Dmg 5) (Dmg 5))
"deal 5 damage, | then deal 5 damage"

50

Data Types Il

Deal 5 damage twice.

——

desc :: Card -> String
desc (...) =

desc (And cl c2) |[<condition>]=

<#{desc c} twice>
desc (And cl c2) =
[i|#{desc cl}, then #{desc c2}|]

> desc (And (Dmg 5) (Dmg 5))

"deal 5 damage

51

Data Types Il

52

Data Types Il

53

Data Types IV

data Card

= Dmg Int
| Block Int

' . ‘-l\\

N

Deal 4 damage to ALL |

enemies. Heal HP equal '

to unblocked damage.
Exhaust.

Deal 5 damage twice.

Gain 5 Block.
Deal 5 damage. J

/ <

54

Data Types IV

data Card a where

Dmg :: Int -> Card Int
Block :: Int -> Card Int
Bind :: Card a -> (a -> Card b)

-> Card b

55

Data Types IV

data Card@where

mg :: Int -> Card Int
Block :: Int -> Card Int
Bind :: Card a -> (a -> Card b)

-> Card b

56

Data Types IV

damage dealt

data Card a where)’

Dmg :: Int -> Card

Block Int -> Card Int

Bind :: Card a -> (a -> Card b)

-> Card b

57

Data Types IV

data Card a where
Dmg :: Int -> Card Int
Block :: Int -> Card Int

Bind :: Card a -> (a -> Card b)
-> Card b

58

Data Types IV

qual
o unblocked damage.
Exhaust.

59

Data Types IV

Deal 4 damage
equal
o unblocked damage.

60

Data Types |V

[Bind}

/\

Dmg 4

\x -> Block x

N

/

damage dealt

61

Data Types |V

[Bind}

/\

Dmg 4

\x -> Block 3

N

/

damage dealt = 3

62

Data Types |V

Deal 4 damage to ALL
enemies. Heal HP equal

[Bind}

/\

Dmg 4

\x -> Block x

to unblod
Ex
[] []

Card Int

63

Data Types |V

Deal 4 damage to ALL
enemies. Heal HP equal

[Bind}

/\

Dmg 4

\x -> Block x

to unblod
Ex
[] []

Card Int

Int —->
Card Int

Data Types |V

:: Card Int

Dmg 4 \x -> Block x

Deal 4 damage to ALL

enemies. Heal HP equal
to unblocked damage.
Exhaust.

Data Types |V

apply ::

Card a -> State -> (a, State)

apply (Dmg x) s =
apply (Block x) s

(x, <new state>)

= (x, <new state>)

66

Data Types |V

apply ::
Card@—> State ->|(a,

67

Data Types |V

apply ::

Card a -> State -> (a, State)
apply (...) = (...)
apply (Bind cl c2) s = let

(a, afterl) = apply cl s

in apply (c2 a) afterl

68

Data Types |V

apply ::

Card a -> State -> (a, State)
apply (...) = (...)
apply (Bind cl c2) s = let

(a, afterl) = apply cl s

/1 apply (c2 a) afterl

eg.
damage dealt

69

Data Types IV

apply :: Card a -> State -> (a, State)
apply (...) = (...)

> apply
Deal 4 d to ALL - -
eneet:nies.al-llrgfillgequal ‘ (Blnd (Dmg 4) (\x > Block X))
to unblocked d ,
o e (10, 10)
(4,(6,14))

70

Data Types |V

desc :: Card a -> String
[i|deal #{x} damage]|]

desc (Dmg x) =
desc (Block x)

[i]gain #{x} block]]

71

Data Types |V

desc :: Card a -> String

desc (...) = (...)

desc (Bind cl c2) =
[1|#{desc cl}, then ?]|]

72

Data Types |V

desc :: Card a -> String

desc (...) = (...)

desc (Bind cl c2) =
[1|#{desc cl}, then ?|]

73

Data Types IV

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

desc

Card a -> String

desc (...) = (...)
desc (Bind cl c2) =
[1|#{desc cl}, then ?|]

> desc (Bind (Dmg 4)

"deal 4 damage, then ?'

(\x -> Block x))

74

Data Types |V

Dmg 4 \x -> Block x

l Deal 4 damage !o ALL
enemies. Hea equal
to unblocked damage.
Exhaust.

Data Types |V

Deal 4 damage to ALL

[Bind}

76

Data Types V

data Card a b where

Dmg :: From a Int -> Card a Int

Block :: From a Int -> Card a Int

DepAnd :: Card () a -> Card a b
-> Card () b

data From i o where
Const :: a -> From () a

DamageDealt :: From Int Int
77

Data Types V

U

Deal 4 damag

enemies. Heal

Cyvh A ct
LXIN1aust.

78

Data Types V

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

> apply (DepAnd (Dmg (Const 4))
(Block (DamageDealt))) (10, 10)
(4,(6,14))

> desc (DepAnd (Dmg (Const 4)) (Block
(DamageDealt)))
"deal 4 damage, then block equal to

damage dealt"
79

Relation

[And } [DepAnd} [Bind}

80

Relation

[And } [DepAndJ [Bind}

I %

Applicative < Arrow < Monad

81

Relation

[And } [DepAnd} [Bind}

I %

Applicative Arrow Monad

82

Effect Handlers

Handler Languages/Libraries

As Library: As Language Feature:

= EFF

= Scala

Idris

84

Handler Languages/Libraries

As Library: As Language Feature:
PN EFF
- koka]
=

Idris .

85

Handlers

data Card a where

Dmg
Block

N

Int -> Card Int
Int -> Card Int

effect Dmg: int -> int

effect Block:

EFF

int -> int

86

Handlers

data Card a where
Dmg ::[Int -> Card Int]
Block :: Int -> Card Int

N

effect Dmg:[int -> int]
effect Block: int -> int

EFF

87

Handlers

Deal 6 damage.

perform (Dmg 6)

88

Handlers

Deal 6 damage.

perform (Dmg 6)

error: uncaught effect

‘Dmg 6’ .

89

Handlers

handle

perform (Dmg 6)
with

| effect (Dmg x) k ->

90

Handlers

Deal 6 damage.

handle
perform (Dmg 6)
with
| effect (Dmg x) k ->
"deal #{x} damage"

91

Handlers

Deal 6 damage.

handle

perform (Dmg 6)
with

| effect (Dmg x) k -> (fun s

-> (continue k x) <new s>)

92

Handlers

apply (Dmg 1) where
apply (Dmg x) s =

1

<new s>

handle
perform (Dmg 1)
with

| effect (Dmg x) k -> ...

EFF

93

Handlers

apply (Dmg 1) where
apply (Dmg x) s =

1

<new s>

handle

perform (Dmg 1) ;
[perform (Block 1)]
with

| effect (Dmg x) k -> ...

EFF

94

Handlers

apply (Dmg 1) where handle
apply (Dmg x) s = <new s> perform (Dmg 1) ;
[perform (Block 1)]
with
| effect (Dmg x) k -> ...
[| effect (Block x) k -> ...]
= EFF)

Handlers

Gain 5 Block.
Deal 5 damage.

handle
perform (Dmg 1);
perform (Block 1)
with
| effect (Dmg x)
—>[(continue k x) |<new s>)

| effect (Block x)|k |-> (fun s

-> (fun s

—>[(continue k x)|<new s>)

[l x -> (fun s -> s)

96

Handlers

(£

= handle A
perform (Dmg 1) ;
\‘perform (Block 1L

with

effect (Dmg x) k -> (fun s
-> <new s>)

effect (Block x) k -> (fun s
-> <new s>)

X -> (fun s -> s)

>[f (5, 5)]

97

Handlers

f = handle > £ (5, 5)
perform (Dmg 1),; (4,5)
perform (Blo 1)

with
| effect (Dmg x) k -> (fun s

-> [<new S>]

| effect (Block x) k -> (fun s
-> <new s>)

| x =-> (fun s -> s)
98

Handlers

f = handle
perform (Dmg 1) ;
perform (Block 1)
with
| effect (Dmg x) k -> (fun s
-> <new s>)
| effect (Block x) k -> (fun s
-> <new s>)
| x =-> (fun s -> s)

> £ (5, 5)
(4,3)

99

Handlers

f = handle > £ (5, 5)
perform (Dmg 1) ; (4
[perform (Block 1)] ?
with
| effect (Dmg x) k -> (fun s

-> <new s>)
| effect (Block x) k -> (fun s
-> <new s>)

| x =-> (fun s -> s)
100

Handlers

f = handle > £ (5, 5)
perform (Dmg 1) ;
perform (Block 1)
with
| effect (Dmg x) k -> (fun s
—>[(continue k x)]<new s>)

| effect (Block x) k -> (fun s

—>[(continue k x)]<new s>)

| x =-> (fun s -> s)
101

Handlers

f = handle > £ (5, 5)
perform (Dmg 1),; (4,5)
perform (Blo 1)

with
| effect (Dmg x) k -> (fun s

-> (continue k x)[<new s>ﬂ

| effect (Block x) k -> (fun s

-> (continue k x) <new s>)

| x =-> (fun s -> s)
102

Handlers

f = handle
perform (Dmg 1) ;
erform (Block 1)

mg x) k -> (fun s

—>»kcontinue k x)]<new s>)

| effect (Block x) k -> (fun s

-> (continue k x) <new s>)

| x =-> (fun s -> s)

> £ (5, 5)
<475

103

Handlers

f = handle
perform (Dmg 1) ;
perform (Block 1)

with
| effect (Dmg x) |k -> (fun s

-> (continue k*x) <new s>)
| effect (Block x) k -> (fun s

-> (continue k x)[{new s>ﬂ

| x =-> (fun s -> s)

104

Handlers

f = handle
perform (Dmg 1) ;
perform (Block 1)

ct (Dmg x) k -> (fun s
tinue k x) <new s>)

ock x) k -> (fun s

-> (c
| effect
—>[xcontinue k x)]<new s>)

| x =-> (fun s -> s)

> £ (5, 5)

<4757
<4767

105

Handlers

f = handle > £ (5, 5)
perform (Dmg 1) ; <475
perform (Block 1) 4-6)

with (4,6)

| @ffect (Dmg x) k -> (fun s
-% (continue k x) <new s>)

| effect (Block x) k -> (fun s
-> ontinue k x) <new s>)

| x -> kfun s -> s)]

106

Handlers

handler
| effect (Dmg x) k ->
"deal #{x} damage, and then
| effect (Block x) k ->

"block #{x}, and then

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

107

Handlers

handler
| effect (Dmg x) k ->
"deal #{x} damage, and then ?"
| effect (Block x) k ->
"block #{x}, and then ?"

Deal 4 damage to ALL
enemies. Heal HP equal
to unblocked damage.
Exhaust.

108

Handlers

data Card a where | effect (Dmg x) —> (fun s
Dmg :: Int -> Card Int -> (continue k x) <new s>)
Block :: Int -> Card Int | effect (Block x)—> (fun s
(Bind :: Card a) -> (continue k x) <new s>)

-> (a -> Card b)

-> Card b)

= EFF

Handlers

data Card | effect (Dmg x) —> (fun s

= Dmg Int [(Int -> Card) -> (continue k x) <new s>)
| Block Int [(Int -> Card) | effect (Block x)—> (fun s

-> (continue k x) <new s>)

= EFF

Handlers

data Card a | effect (Dmg x) k -> (fun s

= Dmg Int (Int -> Card a) -> (continue k x) <new s>)

| Block Int (Int -> Card a) | effect (Block x) k -> (fun s
| Return@ -> (continue k x) <new s>)

|B—> (fun s -> s)

]’EF EFF y

Non-Monadic
Effect Handlers

Non-Monadic Handlers

oL

lotions of computation as monoids*

MAURO JASKELIOFF
o Internacio r) 10 d ncias de la Informacid de Sistemas
CONICET, Rosaric e, rentina
ersidad Nacional de Rosari YL 1 Fe, Argentina

e-mails oni gov.ar, ¥ conicet.g

Abstract

There are different notions of computation, the most popular being monads, applicative
functors, and arrows. In this article, we show that these three notions can be seen as instances
of a unifying abstract concept: monoids in monoidal categories. W nonstrate that even
when working at this high level of generality. one can obtain useful results. In particular,
we give conditions under which one can obtain free monoids and Cayley representations
at the level of monoidal categories, and we show that their concretisation results in useful
constructions for monads, applicative functors, and arrows. Moreover. by taking advantage
of the uniform presentation of the three notions of computation, we introduce a principled
approach to the analysis of the relation between them.

113

Non-Monadic Handlers

Applicative Arrow Monad

114

Non-Monadic Handlers

Applicative Arrow Monad

\J/

pX.I + & © X

115

Non-Monadic Handlers

Handlers for Non-Monadic Computations

Ruben P. Pieters
KU Leuven
ruben.pieters@cs.kuleuven.be
ABSTRACT
Algebraic effects and handlers are a convenient method for structur
ing monadic effects with primitive effectful operations and separat

ing the syntax from the interpretation of these operations. However,

the scope of conventional handlers are somewhat limited as not all
side effects are monadic in nature.

This paper generalizes the notion of algebraic effects and han
dlers from monads to generalized monoids, which notably covers
applicative functors and arrows. For this purpose we switch the

category theoretical basis from free algebras to free monoids. In

addition, we show how lax monoidal functors enable the reuse of

handlers and programs across different computation classes, for

example handling applicative computations with monadic handlers.

Tom Schrijvers
KU Leuven
tom.schrijvers@cs.kuleuven.be

Exequiel Rivas
CONICET - UNR

rivas(@cifasis-conicet.gov.ar

of these effects is represented by an interpretation for the opera
tions.

Although the conventional handlers capture monadic effects
well, other computation classes such as applicative functors and
arrows are not covered. To remedy this situation, Lindley [7] pre
sented a language design supporting handlers for the classic triad

of effects: monad, arrow and applicative. This is backed by a type

system verifying the class of expressed computations. However,

Lindley's sition lacks an extension of the category theoretical
underpinnings, introduced by Plotkin and Pretnar.

This work aims to provide this extension by reviewing the defi
nition of handlers to include non-monadic computations, notably
applicative functors and arrows. For this purpose we leverage the
framework of Rivas and Jaskelioff [14] which characterizes the triad

116

Non-Monadic Handlers

Applicative Arrow Monad

pX.I + & © X

Applicative Arrow onad

Handler Handler Handler

117

Non-Monadic Handlers

Applicative Arrow Monad

pX.I + & © X

onad

Handler

Applicative Arrow

Handler Handler

118

Non-Monadic Handlers

data Card a where | effect (Dmg x -> ...
Dmg :: Int -> Card Int | effect
Block :: Int -> Card Int
Bind :: Card a
—>[(a -> Card b)
-> Card b

Return :: a -> Card a

k EFF 119

Non-Monadic Handlers
Applicative
Arrow

MOnad | effect (Dmg x) k -> ...

120

Non-Monadic Handlers

handler
| effect (Dmg x) —>

"deal #{x} damage, and then |#{k}|"

| effect (Block x) —>

"block #{x}, and then "

Deal 4 damage to ALL

enemies. Heal HP equal |

to unblocked damage.
Exhaust.

121

Non-Monadic H

andlers

Under consideration for publication in J. Functional Programmir

Generalized Monoidal Effects And Handlers

RUBEN P. PIETERS, TOM SCHRIJVERS
KU Leuven, Leuven, Belgium
EXEQUIEL RIVAS
Inria, Equipe 772, Paris, France

(e-mail: {ruben.pieters, tom.schrijvers}@cs.kuleuven.be, erivas@irif.fr)

Abstract

lgebraic effects and handlers are a convenient method for structuring monadic effects with primitive
effectful operations and separating the syntax from the interpretation of these o ions. However,
the scope of conventional handlers is limited as not all side effects are monadic in nature.

This paper generalizes the notion of algebraic effects and handlers from monads to generalized
monoids, which notably covers applicative functors and arrows. For this purpose we switch the
category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal
functors enable the reuse of handlers and programs across different computation classes, for example
handling applicative computations with monadic handlers.

We motivate and present these handler int s in the context of build systems. Tasks in a build
system are represented by a free computation and their interpretation as a handler. This use case is
based on the work of Mokhov er al. (2018).

122

Non-Monadic Handlers

0 () |

Build |

System ——

Task ~ o \

[[dependency]]

Build Systems a la Carte, A. Mokhov et al. 123

Conclusion

Conclusion

Dmg :: Int -> Card Int effect Block: int -> int
Block :: Int -> Card Int

= EFF

Conclusion

data Card a where

Dmg :: Int -> Card Int
Block :: Int -> Card Int
Monad
Applicative
Arrow

N

effect Dmg: int -> int

effect Block:

EFF

int -> int

126

Conclusion

data Card a where

effect Dmg: int -> int
effect Block: int -> int

—p> | effect (Dmg x) k ->

Dmg :: Int -> Card Int
Block :: Int -> Card Int
Monad -—
Applicative
Arrow

N

EFF

127

Conclusion

Dmg :: Int -> Card Int effect Block: int -> int
Block :: Int -> Card Int

—p | effect (Dmg x) k ->

Monad -—

Applicative
Arrow \ | effect (Dmg x) £ k ->
N EFF

Conclusion

Dmg :: Int -> Card Int effect Block: int -> int
Block :: Int -> Card Int

—p | effect (Dmg x) k ->

Monad -—

Applicative
Arrow \ | effect (Dmg x) £ k ->

+ more ?

= EFF

